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Abstract—Within the next several years, there will be a
high level of autonomous technology that will be available
for widespread use, which will reduce labor costs, increase
safety, save energy, enable difficult unmanned tasks in harsh
environments, and eliminate human error. Compared to software
development for other autonomous vehicles, maritime software
development, especially in aging but still functional fleets, is
described as being in a very early and emerging phase. This
presents great challenges and opportunities for researchers and
engineers to develop maritime autonomous systems. Recent
progress in sensor and communication technology has introduced
the use of autonomous surface vehicles (ASVs) in applications
such as coastline surveillance, oceanographic observation, multi-
vehicle cooperation, and search and rescue missions. Advanced
artificial intelligence technology, especially deep learning (DL)
methods that conduct nonlinear mapping with self-learning
representations, has brought the concept of full autonomy one
step closer to reality. This article reviews existing work on the
implementation of DL methods in fields related to ASV. First,
the scope of this work is described after reviewing surveys
on ASV developments and technologies, which draws attention
to the research gap between DL and maritime operations.
Then, DL-based navigation, guidance, control (NGC) systems
and cooperative operations are presented. Finally, this survey is
completed by highlighting current challenges and future research
directions.

Index Terms—Autonomous Surface Vehicle, Deep Learning,
NGC System, Intelligent Autonomous Systems, Neural Network.

I. INTRODUCTION

IN the next decades, water, air, and land transport will be
deeply shaped by autonomous vehicles. Although many

technological challenges have not yet been solved, autonomous
systems will undoubtedly be the core component of future
transportation systems [1]. Since the last century, unmanned
aerial vehicles (UAVs) and autonomous underwater vehicles
(AUVs) have been widely deployed in a variety of real-world
applications. As a result of the efforts of leading technology
companies, autonomous cars have been tested for millions of
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miles in preparation for full commercialization. Having bene-
fitted from the advancement of guidance and control theory
for surface vehicles, for decades, ASVs have been deeply
involved in military, research, and commercial applications,
including surveillance, data collection, and sea, surface and
space communication hubs [2].

ASV can minimize the impact, limitation, and cost of human
operators. After being launched from a dock, an ASV can be
remotely operated by a human. With the help of computers,
global positioning systems (GPSs), differential global position-
ing systems (DGPSs), and satellite communications, ASVs can
navigate and perform a task autonomously [3]. In autonomous
mode, ASV can perform a given mission without external su-
pervision and then return to the dock at the end of its mission.
At the beginning of the 20th century, the lack of effective and
reliable obstacle detection sensors slowed the emergence of re-
liable obstacle avoidance methods [4]. Currently, the advent of
more sophisticated airborne and satellite sensors has enabled
the study of temperature, moisture, and wind fields in maritime
convective systems. Advanced sensors, such as light detection
and ranging (LiDAR), are characterized by strong computing
capabilities and high-accuracy positioning systems with global
coverage and have already reshaped the navigation system of
all autonomous vehicles [5]. New data transfer technologies,
high-capacity local area networks (LANs), wide area networks
(WANs), and inexpensive satellite-based data communications
are expected to further international collaborations toward the
development of ASVs [6].

Recently, the capability of ASVs was greatly improved by
large-scale data with machine learning and artificial intelli-
gence technologies [7], [8]. DL methods, such as deep neural
networks (DNNs) and deep reinforcement learning (DRL),
have been used to make progress in solving long-existing
problems of ASVs that cannot be solved with traditional
methods [9]. For example,

• Nonlinear System Identification: As a universal approx-
imator, DNN can estimate the unknown parameters of the
ASV model [10], [11], unknown dynamics [12], [13] and
environmental disturbances. In addition, using a learning
function that dynamically maps the relationship between
the input variable (state variable) and the output variable
(hydrodynamic force and moment data), a controller can
be built without a priori knowledge of the ASV dynamics
or a mathematical model [14].

• Model-free Control: In complicated maritime environ-
ments, it is almost impossible to model the exact dy-
namics of a nonlinear system [15]. DL methods can
be used to design optimal data-driven and model-free
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control that requires only the ASV input-output signals
without knowing the model [16]. Furthermore, DRL
can characterize and control extremely complex systems
learning the interaction between agent and environment
[17]–[19].

• Sea Surface Object Detection: Based on a DL method,
a sufficient amount of relevant data is collected by the
sensors, which allows an accurate estimate of the state
of a vehicle. Environmental information, including other
ASVs and the harbor [20], can be detected and analyzed
by applying a DL method to different types of data
sources [21].

• Future Behavior Prediction: By exploring long-term
historical automatic identification system (AIS) data
based on DL methods, the future status of maritime
transportation systems is available for advanced manage-
ment and planning [22] toward safer, highly efficient, and
energy-conscientious maritime systems [23].

• Human Like Decision Making: To make decisions
while complying with regulations when encountering
other surface vehicles, a DL-based method is able to learn
possible human behaviors from complex task experiences
such as collision avoidance [24] and docking [25]. DL
methods can automatically learn high-level features to
react appropriately in complex environments with many
constraints [26].

This work comprehensively summarizes and compares the
application of DL methods to ASVs and how DL techniques
have permeated the entire field. Related topics include, but
are not limited to, NGC systems and cooperative operations,
as well as the integration and application of advanced sensors,
communication systems, and big data technologies. This arti-
cle concludes by discussing challenges and presenting possible
future research directions that may be worth pursuing based on
DL methods. In general, the aims of this work are as follows.

1) Present a current survey of research showing how DL
techniques improve ASV systems and successfully solve
emerging challenges. In particular, advances in DL-
based NGC systems are highlighted.

2) Further, we discuss current research and future directions
for the application of DL techniques from the point of
view of intelligent maritime operations.

The authors hope that this work can guide researchers,
engineers and managers who want to understand the applica-
tion of DL for maritime operations or employ DL to solve
related problems. First, in Section II, existing ASV-related
surveys are reviewed and the scope of this work is defined.
In Section III, an overview of the basic ASV structure is
provided, including hardware, onboard equipment, and the
NGC system. DL applications for navigation systems (Section
V), guidance system (Section VI), and control system (Section
VII) are examined and compared in detail, with a focus on
the implementation of gradually evolving DL models on NGC
systems. Then, cooperative maritime operations are reviewed
in Section VIII. The research gaps, current challenges, and
future research directions are discussed in Section IX. Finally,
the conclusion of this work is given in Section X.

II. ASV-RELATED SURVEYS AND SURVEY SCOPE

From 2006 to 2017, only 16 surveys were published, and
they mainly covered ASV prototypes [2]–[4], [27]–[35] and
NGC systems [2], [28], [30], [36], [37]. At the beginning
of 2017, many large ship companies, such as Rolls-Royce,
Kongsberg, and Yara, made contributions to the development
of an autonomous ship. Rolls-Royce published a report and
made efforts toward its vision of autonomous shipping [38].
Then, Kongsberg and Yara collaborated to build the world’s
first fully electric, autonomous, zero-emission ship - Yara
Birkeland. At the end of 2017, the International Maritime
Organization (IMO) developed their Strategic Plan for the
Organization for the 6-year period from 2018 to 2023 and
discussed the issue of autonomous marine surface ships, which
was defined as MASS in 2018.

Between 2018 and 2022, 25 surveys strongly related to
ASVs were published. Some of these works introduced further
developments of the ASV and NGC systems [7], [8], [39]–
[46], as well as their real-world applications [47]–[50]. In
addition, to meet the goal of introducing the next level of
autonomy to ASVs, the researchers focused their attention
on collaboration [51]–[53] and communication [54] between
multiple ASVs and other vehicles. Other researchers explored
current trends toward autonomous shipping [42], [55]–[58].
When imagining ASV or MASS voyaging on a surface
autonomously, issues, including control and support centers
[59], civil liabilities and insurance [60], technology [61] and
business requirements [56], need to be addressed carefully.

DL has radically changed many research areas and led to
a surge of research in the past decade. DNNs are capable
of forming compact representations of states from raw, high-
dimensional, multi-modal sensor data, which are commonly
found in robotic systems. For navigation subsystems, con-
volutional neural networks (CNNs) with hierarchical feature
extraction capability have already been shown to be efficient
for object detection and obstacle identification [50]. With the
collection of increasing amounts of maritime data, DL is
considered a powerful framework compared to other machine
learning methods to interpret large quantities of data automat-
ically and relatively quickly. DNN has also been shown to be
efficient in ASV control, especially in autonomous docking
[57]. In the field of robotic control for intelligent autonomous
systems, DRL [17] has recently been applied to AUV, UAV
[62], autonomous cars [18], and ASVs [14].

However, based on existing surveys, there is a lack of dis-
cussion about the implementation of DL for ASVs. Therefore,
this work reviews past and future technical developments and
challenges of ASVs, especially the role of DL methods in im-
proving the intelligence and autonomous levels. In addition to
a thorough comparison of ASV prototypes and the architecture
of ASV control systems, the authors try to answer the follow-
ing questions: “What DL methods have been successfully ap-
plied to ASVs? What are the theoretical and practical strengths
and weaknesses”; “How can current maritime operations be
solved with DL methods? and, which directions are promising
for future research?” To the best knowledge of the authors, the
DL techniques for ASVs have not yet been comprehensively
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studied. A better understanding of the current and potential
role of up-and-coming DL techniques in ASVs will provide
momentum for future autonomous maritime operations.

III. ASV SYSTEMS

A. ASV Category

Each type of ASV can be leveraged for a specific ap-
plication based on its size, function, or unique features, as
shown in Fig. 1. For example, naval ASVs need to be
controlled remotely and operated at high speed. Additionally,
heavy payloads and limitations on energy consumption are
required. ASV research for oceanography requires autonomous
navigation, energy conservation, and stable measurements at
low speed [34]. Commercial surveillance ASVs are usually
equipped with advanced visual monitoring sensors, high-
performance controllers, and efficient communication systems
with on-shore management centers.

B. ASV Architecture

The motion of a ship can be described as an earth-fixed
frame or body-fixed frame, as shown in Fig. 2. The rigid body
motions of a typical surface vehicle with 6 DOFs include:

(1) Three types of displacement motions (heave, sway or
drift, and surge), which move through the x 0, y 0, and z 0
directions, respectively.

Communication

WiFi Router

GSM Modem

IRIDIUM 
Modem

Sensors

GPS IMU

Radar Camera

CompassSonar

NGC
System

Engine System

Rudder Actuation 

Propeller/Water-jet

An
te

nn
a

Fig. 3. The Architecture of a typical ASV

(2) Three angular motions (yaw, pitch, and roll), which are
the rotations about the x 0, y 0, and z 0 axes, respectively.

Among the multiple options for the manufacture of ASV,
the hull supports the main four components of the system, in-
cluding the engine, communication, sensor and NGC systems
[35].

1) Hull: As the main physical component of ASVs, hulls
are waterproof bodies of ships or boats that can be classi-
fied into single hulls (kayaks and monohulls) and multihulls
(catamarans and trimarans).

2) Engine System: The controller design should consider
how many appreciable degrees of freedom (DOFs) of the
ASVs can be actuated by the actuators. Most existing ASVs
use underactuated controls, which means that only part of
the DOFs can be controlled. If all DOFs can be controlled
by multiple actuators, then the ASV is activated. For more
complex tasks, such as docking, overactuated controls that can
make use of additional DOFs are more effective.

3) Communication System: Stable and reliable communi-
cation is essential for information exchange between (1) com-
puters, sensors, and other hardware that need to be controlled;
(2) multiple vehicles, such as ASVs, AUVs, and UAVs; (3)
vehicles and onshore control centers; and (4) vehicles and
remote satellites.

4) Sensor System: Sensors act as an interface between an
ASV and the environment, providing a vehicle with informa-
tion relative to its self-state and the environment. In addition
to the performance monitoring sensor, the ASV shipboard sen-
sors provide location, status, and environmental information,
as shown in Table III. The deployment of different types of
sensors depends on the mission requirements.

5) NGC System: In an attempt to automate the ASV oper-
ation process, three systems are indispensable in the software
structure. Navigation, guidance, and control, as illustrated in
Fig. 4. As software installed on an onboard computer, the NGC
system processes the data collected for situation awareness,
plans the possible path, and drives the surface vehicle to
the destination. The NGC system is the core of autonomous
operation.
• Navigation (Section V): Navigation usually refers to the

study of the process of monitoring the movement of vehicles.
As the most fundamental requirement for safe operation,
full assessment of surface vehicle status and its surrounding
environment based on sensor data is essential for maritime
vehicles. There are two stages in navigation systems, that is,
environmental perception and state estimation.

Environmental Perception refers to the process of measuring
surrounding environments, such as waves, winds, objects, and
obstacles on the surface [63].



4

Local
Path Planning

Path Planning

Global
Path Planning

Path Generation

Guidance

Environment 
Perception

State Estimation

Situation Awareness

Positioning

Target TrackingBerthing

Path Following

Trajectory TrackingManoeuvring

Navigation

Motion Control Scenarios

Control

Communication 
Module

Sensors Hull Engine

Hardware

Sensor Data Performed motion task

Navigation Data Reference trajectory

Mission data: origin and destination

Disturbance

Data Stream Interacting

Navigation Data Actuator force and angle

Fig. 4. The structure of ASV systems

State Estimation refers to the problem of reconstructing the
underlying state of a system given a sequence of measurements
and a prior model of the system.

• Guidance (Section VI): Based on the status information
provided by the navigation system, the goal of guidance is to
plan and generate possible paths from departure to destination
with the ability to avoid obstacles and obey rules.

Path Planning can be further divided into global and local
methods [2]. Global path planning aims to find an optimal
or near-optimal collision-free path between the origin and
destination in advance.Local path planning requires an ASV
response to the previously unknown obstacle and changes in
the environment.

Path Generation refers to the process of generating an
optimal path for ASV.

• Control (Section VII): The control system generates
the proper control forces and moments for the ASV driving
equipment [2].

Motion Control Scenarios refer to the specific scenarios in
which an ASV operates, including point stabilization, target
tracking, path following, trajectory tracking, maneuvering, and
berthing. The definition of each motion control scenario can
be found in Section VII.

IV. DEEP LEARNING MODELS AND TECHNIQUES

Many publication have focused on the advancement of DL
[21], [64], as well as the applications of DL on robotics
[65], autonomous cars [66], UAVs [62], and UUVs. Therefore,
to avoid unnecessary repetition, we briefly introduce the DL
models and its applications categorized by different learning

methods, i.e., supervised, unsupervised, and reinforcement
learning methods.

A. Supervised Deep Learning Method

Supervised deep learning methods are trained using well-
labelled data to learn a function that maps an input to an
output. They have been widely applied to solve problems on
ASV navigation, guidance and control.

1) Multilayer Perceptron (MLP): MLP (also called Feed-
Forward NN, that is, FFNN) is one of the most basic neural
network (NN) models that can approximate nonlinear func-
tions and add one or multiple fully connected hidden layers
between the output and input layers. MLP with more than
one hidden layer is called DNN. Model training is usually
performed through backpropagation for all layers. MLP are
usually used to estimate the model uncertainties of ASV
controller. The modified version of MLP is listed as follows.

Radial Basis Function (RBF): The RBF network can
effectively accelerate convergence speed and avoid local op-
tima because it utilizes Gaussian functions φ(·) as activation
functions in the hidden layer, which is a local approximation
network. RBF has only one hidden layer, and there is usually
one neuron in the output layer, which does not use the
activation function.

Wavelet Neural Network (WNN): Combining the charac-
teristics of wavelet transform and NN, WNN has advantages
such as time-frequency localization, self-learning ability, faster
convergence speed, and low false alarm rate. Using the struc-
ture of MLP or RBF, WNN uses the wavelet function f(.) as
the active function.

Fuzzy Neural Network (FNN): Fuzzy logic captures the
uncertainties associated with human reasoning based on “de-
grees of truth” method, which humans are more easily under-
stood compared to the conventional “true or false” method.
The integration of fuzzy logic and NN, i.e., using a NN to
learn the parameters of a fuzzy logic system, creates an FNN,
which can model uncertainty and nonlinearly in complicated
systems.

2) Convolutional Neural Network (CNN): The basic struc-
ture of CNN contains an input layer, several convolution
layers, several pooling layers, a fully connected layer, and
an output layer. In traditional DNNs, the neurons in different
layers are fully connected. In contrast, the neurons in the
convolution layers and pooling layers of CNNs are not fully
connected to their forward layer. As a result, sparse interaction
and parameter sharing are the two most important character-
istics in a CNN learning process. Based on the basic idea
of CNNs, advanced architectures are designed to solve three
fundamental problems in the computer vision field, i.e., image
classification, object detection, and image segmentation. Some
popular architectures are briefly introduced below, which are
used to perceive the surrounding environment through images,
videos, or data collected in the maritime environment.

CNN-based Classification: Image classification aims to
predict the label for the given image. Based on traditional
CNNs, several improved architectures with more complex
structures are proposed, including LeNet-5, AlexNet, VGG,
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GoogLeNet, Inception Net,ResNet,and others. As the top
competitors of the ILSVRC, these CNN architectures achieve
high classification accuracy, and some of them even surpass
human-level performance on the ImageNet database. These
networks are widely used in many applications as the basic
models for feature extraction or applied in object detection
and segmentation tasks as the backbone network.

CNN-based Object Detection: Autonomous vehicles must
identify and locate an object when perceiving their surround-
ings with sensors. In general, there are two types of object
detection frameworks:

(1) The two-stage algorithm first extracts candidate regions
that may contain the object and then determines whether the
proposed regions contain the object. The first stage uses a
method such as selective search or a region proposal network
(RPN) to generate the regions of interest (ROIs). Then, another
network, such as ResNet, is leveraged to classify the proposed
regions. Popular two-stage object detection methods include
R-CNN, Fast R-CNN, Faster R-CNN, and Mask R-CNN.

(2) The one-stage algorithm directly classifies an object and
predicts the object-bounding boxes for an image in one step.
More specifically, an image is input, and the class probabilities
and bounding box coordinates are learned simultaneously. The
typical framework includes You Only Look Once (YOLO),
Single Shot Detector (SSD) and RetinaNet.

CNN-based Segmentation: In some tasks, each pixel in
captured images should be labeled with semantic tags to
indicate which object the pixel belongs to. Image segmentation
refers to the classification of every pixel in the image.

Fully Convolutional Networks (FCN) are the first CNN-
based network that can solve segmentation problems. FCN
replaces the fully connected layers of CNN with convolu-
tional layers and upsamples the high-level feature map into a
heatmap, the size of which is the same as the original image.
The heatmap shows the classification result for every pixel
of the image. The pyramid attention network (PAN) further
improves FCN by proposing the feature pyramid attention
(FPA) and global attention upsampling (GAU) modules to
learn better feature representations by considering the global
context information. Another commonly used segmentation
method is U-Net, which is structured like a capital letter U.
The architecture of U-Net contains two paths. The first path
is the contraction path, which is composed of a traditional
stack of convolutional and max pooling layers to capture
the context in the image. The second path is the symmetric
expanding path, which is used to enable precise localization
using transposed convolutions. Compared to FCN, U-Net fuses
the features of the two paths on more levels. In terms of the
feature fusion strategy, FCN uses additive fusion and U-Net
uses channel-dimensional concatenation.

3) Recurrent Neural Network (RNN): RNN can make use
of historical information for the prediction of future behavior
by passing all the information from the beginning to the cur-
rent end of the model through the hidden layer. RNNs perform
very well when modeling time-dependent and sequential data
tasks, but usually fail to converge during training because of
problems related to vanishing and exploding gradients. As
an improved version of RNN, the long-short-term memory

(LSTM) has a specially designed memory network, including
a cell, an input gate, an output gate, and a forget gate, to
address the vanishing gradient problem that limits the use of
traditional RNNs. Similar to LSTM, the gate recurrent unit
(GRU) has two gates as opposed to three gates in an LSTM
cell, which means that GRU has fewer training parameters
than LSTM.

B. Unsupervised Deep Learning Method

Unsupervised deep learning method can learn patterns from
untagged data.

1) AutoEncoder (AE): AE is an unsupervised learning
algorithm that is designed to reduce the dimensions of the
data by learning the structure within the data and ignoring
the signal noise. It has an input layer, a hidden layer that
reconstructs the input data for compressed representation, and
an output layer that reconstructs the input. The network should
minimize the difference between the input and output vectors.
Therefore, AE is applied to reduce the noise and dimensions
of the original input in ASV navigation module.

2) Generative Adversarial Networks (GAN): GAN is an
adversarial learning framework designed for data generation
that has a generative model G, which generates samples
similar to training data, and a discriminative model D, which
estimates whether a sample comes from training data or G.
The training process for G is to minimize the Jensen–Shannon
(JS) divergence between the real data distribution and the
generated data distribution. The training process for D is to
distinguish between real data and generated data as much
as possible. Furthermore, a deep convolutional GAN (DC-
GAN) is proposed to provide an experiment-based optimal
hyperparameter set and training skills to improve the stability
of a GAN training process. To further improve the stability
of GANs from their structure and eliminate problems such
as model collapse and vanishing gradient, Arjovsky et al.
[67] proposed the Wasserstein GAN (WGAN), which uses
the Wasserstein distance instead of the JS divergence to
measure the difference between the real and generated data
distributions. GAN has been widely used to expand the dataset
by generating fake images, which is very useful for the ASV
navigation module if the training dataset is not enough.

C. Reinforcement Learning Method

Supervised and unsupervised learning is generally trained
with labeled or unlabeled datasets that are provided in advance.
Reinforcement Learning (RL) is another type of machine
learning technique that enables an agent to learn mapping
from situations to actions by maximizing a scalar reward
or reinforcement signal. The agent observes the state of
the environment st and takes an action at at time t in an
environment. Then, the environment enters a new state st+1

and issues an immediate reward rt+1 to the agent. Finally,
the agent tries to learn to select actions that maximize the
cumulative reward Q(st, at), a.k.a. Q-value.
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1) Deep Reinforcement Learning (DRL): For a complex
environment, when the number of states and actions increases
dramatically, the DL-based method can automatically extract
features from very large states and action spaces with high
dimensions, which introduces deep Q-networks (DQNs). The
combination of RL and DL enables agents to construct and
learn knowledge directly from raw sensors or image signals
without any predefined features [26]. However, DQN is only
applicable to discrete and low-dimensional action spaces. It
cannot be straightforwardly applied to continuous domains,
since it relies on finding the action that maximizes the action-
value function, which in the continuous-valued case requires
an iterative optimization process at every step. To address this
problem, Lillicrap et al. [68] presented the deep deterministic
policy gradient (DDPG), which is a model-free, off-policy
actor-critic algorithm that utilizes deep function approximators
that can learn policies in high-dimensional and continuous
action spaces.

V. DEEP LEARNING DRIVEN NAVIGATION SYSTEM

A. Definition and Key Problems

An ASV navigation system provides environmental and
self-state information to guidance and control systems based
on collected data [2], [32]. ASV usually has many sensors
onboard that cumulatively collect very large amounts of data
to monitor the performance of the ASV and the local environ-
ment, including the shore and static or moving obstacles [69].
In addition, with the support of an advanced communication
system, ASV can also receive information about the global
environment, which covers large areas, such as an entire port
with hundreds of ships. This type of information includes data
from other ships collected by AIS [70], synthetic aperture
radar (SAR) images [20], and images and videos taken by
cameras on Autonomous Air Vehicle (AAV) [71] or other
platforms [72]. The key problems of ASV navigation are
discussed below.

1) Environmental Perception: Shipboard and remote sen-
sors can provide information to ASVs for surrounding aware-
ness to address external factors introduced by waves, currents,
winds, and weather in a typical maritime environment and
adapt to complex environments that include a large number
of stationary or moving obstacles in real time [63]. However,
using highly dimensional data collected from a variety of types
of equipment to reflect the complex environment is a very large
challenge.

2) State Estimation: An ASV state usually includes its
position, orientation, velocity, and acceleration. However, the
positions, Euler angles and linear and angular velocities of
a ship measured by sensors such as global navigation satel-
lite systems (GNSS) and inertial measurement units (IMUs)
usually contain noise and errors, which can lead to failure.
In recent years, advanced onboard sensors such as camera
[69], [73], [74], radar, LiDAR [75] and remote SAR image
[76] have improved the accuracy of the estimation. However,
several unique situations, such as noise introduced by winds,
waves, and weather, and harsh communication environments in
the open sea, make accurate state estimation very challenging.

(a) Horizontal bounding boxes (b) Rotated bounding boxes

Fig. 5. Ship detection with optical remote sensing [77]

3) Data Processing Problem: The large number of data
streams collected by heterogeneous sensors are different from
each other in temporal and spatial resolution, data format,
and geometric alignment. Therefore, certain processes, such as
compression, dimensionality reduction, and fusion, may help
improve the quality of data.

B. Navigation with Deep Learning Model

1) Environmental Perception: Existing related work regard-
ing the application of DL methods on maritime environmental
perception can be categorized by the type of navigation data
source, i.e., data collected by onboard or onshore equipment
(optical and infrared images, radar images, and point clouds),
or images captured by satellite (optical remote sensing images
and SAR images). Here, based on different data source types,
we introduce the DL-based environmental perception methods
for optical and radar images, respectively.

The Processing of Optical Images: They are captured
by on-board, onshore sensor, or satellite sensor, and usually
experience the following challenges:

• The image quality depends greatly on the time of day
and the absence of cloud coverage.

• A large quantity of data has high resolution and is thus
more difficult to utilize in real-time applications.

• It is difficult to separate ships in ports because there
are complex contexts such as buildings, docks, and over-
lapped ships that are usually closely docked side by side.

• It is also difficult to locate a ship accurately because
the target ships have extremely long and thin shapes and
arbitrary rotations, as shown in Fig. 5.

Above challenges have been studied to detect ships with
complex backgrounds [72], [77]–[85], detect multiscale ships
[72], [77], [79], [80], [84], [86]–[88], and detect ships with
small data sets [89]–[91].

For ship detection with complex backgrounds, extracting
appropriate feature representations that can better distinguish
ships from surrounding turbulence is very important. Re-
searchers have tried to integrate high- and low-level features
for ship detection. One typical solution is to extract multiscale
feature representations. Based on Mask R-CNN, Nie et al.
[83] added a bottom-up path to propagate low-level features
to the top layer. Another solution is to extract features using
image pyramids, the feature maps of which from low to high
layers form a pyramid-like shape. Yang et al. [77], [84] applied
a dense FPN, in which the feature maps in different layers
are densely connected and merged by concatenation. Huang
et al. [85] designed skip-connection path networks to extract
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(a) Small and densely clustered ships
with big bounding box

(b) False detection on the land

Fig. 6. Ship detection in SAR image [92]

features from each CNN layer and fuse all extracted features.
Furthermore, expanding the training data set using a data
augmentation strategy [81] and segmenting the sea and land
areas before feature extraction [72], [80] are also effective
strategies.

For multiscale ship detection, popular object detection meth-
ods based on horizontal region detection have a large redun-
dancy region for the bounding box of ship detection (see Fig. 5
(a)) compared to region detection based on rotated bounding
boxes, which can be rotated according to the orientation of the
ship (see Fig. 5 (b)). Li et al. [86] constructed two regression
branches to independently predict the location of the center
points x, y, the width w, and height h, and the orientation θ of
the boundary box based on different CNN characteristics. For
arbitrarily oriented ships, Yu et al. [87] proposed an anchor-
assisted strategy that accurately predicts rotational bounding
boxes and does not require manual anchor design. Zhang et
al. [88] proposed an anchor-free rotation ship detection method
by transforming the ship detection task into a binary semantic
segmentation task, which directly detects pixels belonging to
ships and predicts the distance between each pixel and four
boundaries.

For ship detection with small dataset, to increase the training
samples, researchers pre-trained a DL-based object detection
framework on a well-established open dataset [89], or generate
fake ship images with GAN [91].

The Processing of Radar Images: They are captured by
on-board, onshore sensor, or satellite sensor, and usually suffer
from the following issues:

• Although SAR is capable of working all day under any
weather conditions, SAR images usually have a lower
resolution and fewer pixels than optical remote sensing
images. Thus, some of the models used on optical images
cannot be applied directly to SAR images.

• Small and densely clustered multi-scale ships in SAR
images that occupy only a few pixels are very difficult to
detect (see Fig. 6 (a)).

• Ships in SAR images exist at a variety of scales, have
arbitrary directions, and are densely arranged or even
overlapped in ports.

• Objects with analogical scatterings on land cause high
false alarm rates (see Fig. 6 (b)).

• Massive open SAR image datasets are rare and exten-
sively labeled samples require a large amount of manual
labor.

Above challenges have been studied to detect multiscale
ship [92]–[100] and detect ship with small dataset [101]–[104],
[104]–[106].

For multiscale ship detection, similar to optical images,
integrating more extracted features from original SAR images
to detect a ship is also useful. To obtain more semantic
information, Cheng et al. [107] fused features extracted from
radar and optical images to identify small objects on a water
surface. VGG-13 and the backbone network of YOLOv4 were
adopted to extract features from optical and radar images,
respectively. Sometimes, it is very difficult to distinguish
backscattering points of interference from actual ships in
SAR images. Therefore, exploring the relationships between
local features and their global dependences and re-inspection
of information in different feature maps can improve the
performance of multiscale ship detection in SAR images. Zhao
et al. [95] proposed a two-stage detection method that adopts
and combines a receptive field block and a convolutional block
attention module to enhance the relationships of local features
with their global dependence and boost significant information
while suppressing interference. Furthermore, as a type of radar
image, SAR images contain frequency information and can
provide features in the frequency domain [92], [96].

The lack of substantial ground truth data for training is
one of the major problems in the detection and classification
of ships and other objects in SAR images [101], which has
hindered the development of object detectors. In addition to
obtaining more datasets, effective efforts have been made,
including the addition of simulated SAR images to a training
dataset, training deeper networks that extract higher levels of
data presentation features [102], and pre-training the object
detection model on large open datasets [103], [104], have
been made to reduce the false-positive rate on small datasets,
improve detection accuracy, and overall performance. Further-
more, generating a fake dataset with WGAN can also improve
the performance of ship detection in SAR images [106].

2) State Estimation: DNN-based methods can estimate the
motion of ASVs in the presence of nonlinear dynamics and
high-dimensional sensor data with different sampling frequen-
cies. Typical tasks include ship behavior recognition [108],
[109], position identification [110] and motion prediction
[110], [111].

Ship Behavior Recognition: High-fidelity ship kinematic
information (displacement, movement speed, sailing angle,
etc.) can be estimated directly from maritime surveillance
video. Chen et al. [108] recognized ship behaviors based on
video data in four steps: Ship feature extraction based on
YOLO, bounding box generation, position identification based
on geometry theory, and behavioral analysis. Chen et al. [109]
proposed a CNN ship movement mode classification algorithm
to classify ship movements by converting AIS trajectories of
a ship into images with different movements.

Ship Position Identification: DNN was trained based on
historical position data estimated by a star sensor to predict
and compensate for an INS navigation error when the star
sensor is unusable [112].

Ship motion prediction: Zhang et al. [110] utilized LSTM
to capture the inherent law of ship motion on each frequency
scale. An attention mechanism was later adopted to further
improve the accuracy of the prediction.
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3) Data Processing: It is very difficult to use the large
amount of navigation data in maritime environments, which
suffer from the noise introduced by limited on-board loads,
poor communication, and unexpected situations. Therefore,
DNN-based methods have been adapted to extract data rep-
resentation before applying traditional multisensor methods to
reduce data dimension or improve data quality [113].

To reduce the data dimension, an autoencoder system archi-
tecture was proposed to reduce the performance dimensions
and navigation data during transmission [114]. To improve
the quality of the data, Cheng et al. [115] applied CNN in a
data fusion module to extract joint information from different
types of raw input, including the state of motion of the vessel,
the state of existence of obstacles, and the previous control
behavior. The output of a CNN model is a state vector StateID
that contains the operating states of the vessel.

VI. DEEP LEARNING DRIVEN GUIDANCE SYSTEM

A. Definition and Key Problems

Global path planning and local path planning are two
main problems for ASV guidance [2]. Traditionally, the path
planning problem needs to be transformed into a solvable
problem, such as a search problem, which can be solved
by a deterministic method that guarantees the provision of
a complete and consistent search result as long as it exists.
Alternatively, this problem can be solved by a heuristic method
that is able to obtain an approximate solution with a near
optimal result if the deterministic approach is ineffective.
These solutions are listed in Table I.

1) Global Path Planning: Global path planning should gen-
erate an appropriate path from the original to the destination
based on static obstacle map information or historical data.
With an increasing amount of AIS data available, how to make
the best use of these massive data to produce a global path
for ASVs has become a challenge [22], [116].

2) Local Path Planning: The predefined trajectory should
be able to adjust according to tasks, complex and dynamic
environments in real time, which requires local path planning.
Currently, in congested sea areas such as complex ports or
waterways, different surface vehicles frequently encounter
each other. To avoid collisions in an efficient manner, “own
ship” (OS) and “target ships” (TSs) should comply with
widely accepted regulations such as COLREGS [117]. More
specifically, if two ASVs encounter one another in a water
way, from the first-person perspective, OS and TSs have
four types of encounter situations, i.e., the head-on, stand
on, give way and overtake encounters. Before generating a
local path, how to make appropriate decisions (i.e., choose
the encounter situation) in real time is a very large challenge
for researchers, especially under more complex situations such
as OS encounters many TSs simultaneously.

3) Constraints: In real-world scenarios, certain constraints
should be considered according to the specific task an ASV is
assigned to [44], such as:

• Geography constraints include seacoasts, rocks, and
small islands that are present on geological maps. For
global planning in a large area, such as navigating from

TABLE I
THE CATEGORY OF PATH PLANNING ALGORITHM [118]

General Methods Specific Methods

Deterministic Searching Algorithm
Roadmap based searching Visibility graph
- Map construction methods Voronoi diagrams

Probability road map
Roadmap based searching A* searching
- Searching methods D* searching

Field D* searching
Potential Field Conventional potential field

Harmonic potential field
Potential field by fast marching

Optimisation method Mixed integer programming
Optimal control

Heuristic Searching Algorithm
Evolutionary algorithm Genetic Algorithm (GA)

Particle swarm optimisation
Asexual reproduction optimisation
Ant Colony Algorithm (ACA)

Neural Network MultiLayer Perceptron (MLP)
Fuzzy Neural Network (FNN)
Long Short Term Memory (LSTM)
Deep Reinforcement Learning (DRL)

one port to another, considering only geographical con-
straints is sufficient.

• Shape constraints refer to the specific size (length, width,
and height) of the ASV, which must be considered when
planning a path in the middle scale area, where an ASV
cannot be treated as a point. For example, if ASV enters
a channel, the width of the ASV and the channel will
have a very large influence on the path planning process.

• Kinematics constraints represent the specific ranges of
ship and acceleration velocities, which should be consid-
ered if the ASV enters an inner port.

• ASV dynamic constraints contain the inertia forces and
moments of the surge, swaying, yawing, etc. of the ship,
which cannot be neglected for precise path planning in
small-scale areas, such as ASV berthing, which requires
knowing how to precisely steer to berth and must consider
kinematics and shape constraints.

B. Guidance with Deep Learning Model

1) Global Path Planning: Conventional deterministic and
heuristic search algorithms can generate a collision-free path
between the start point and the destination. However, in
existing research, there are several complex tasks that the
deterministic method cannot complete but can be solved by
DNN. These include planning the most energy-efficient path
[119], predicting future paths based on historical trajectories
[22], [70], [116], [120], and planning the optimal path for
multiple tasks [121], which are each described below.

Planning the Most Energy Efficient Path: It is very dif-
ficult to model the relationship between the environment and
energy-efficient-related parameters in mathematical formulas.
Zhang et al. [119] proposed a data-driven ship speed opti-
mization model and an ice route planning model to calculate
the path of the ship with the highest energy efficiency for
the Arctic area. On the basis of historical data, a DNN-based
method was used to determine the relationship between ice
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concentration, ship speed, and an energy efficiency indicator,
and then the optimal path and speed were calculated.

Predicting the Future Paths: The future locations of ships
can be predicted by DNN trained with turning point data such
as latitude and longitude, speed, course, length, width, and
draft of the ship [22]. Instead of predicting the trajectory
iteratively, Gao et al. [120] performed multistep predictions
by predicting both the support point and the destination point,
where the destination point was generated by historical data,
and the support point was produced by a trained LSTM model.

Planning the Optimal Path for Multiple Tasks: To visit
multiple water monitoring stations on the surface with minimal
costs, Liu et al. [121] mathematically summarized the task
as the travel salesman problem, the goal of which is to visit
all water monitoring stations and return to the starting point.
In the global path planning stage, a self-organizing map-
based DNN was applied to learn the relationship between
the location of the water monitoring stations and the optimal
execution sequence.

2) Local Path Planning: Conventional methods do not
address sea or weather conditions or consider nonlinear ship
dynamics due to the following shortcomings [39]:

• The computational complexity of ship collision avoidance
mathematical models is too high to be calculated in an
assumed short period in highly dynamic environments
with multiple objects.

• Predefined architectures can only adopt some specified
situations that involve oversimplified assumptions in risk
assessment and ship dynamic constraints, which cannot
adapt to complex encounter situations that need to comply
with COLREGs.

• The control law is usually formed as complicated formu-
las that consider all possible situations, which cannot be
further adapted through changes.

Therefore, most of the previous studies address only one
obstacle for one instance, which is not practical in increasingly
busy maritime environments. In this section, we review the
DRL-based [117], [122]–[124] and DNN-based [117], [122],
[125] local path planning methods.

DRL-based Local Path Planning: A DRL model learns
how to react through continuous interaction with an uncertain
environment in real time. Ideally, a reward function should
reward an agent for reaching a destination and avoiding
collision with other objects while complying with COLREGs
[117]. However, to avoid collisions, ASV must deviate from
its path and sometimes even move in the opposite direction
of the destination, which will cause penalties. In [122], if
the distances detected from other ships exceed the threshold
value, a negative reward will be assigned; otherwise, a positive
reward will be continuously provided. In [117], [124], a
path-following reward function is used in a safe navigation
environment. If TSs enter a safe area around the OS, the
collision avoidance reward function will be activated.

DNN-based Local Path Planning: In a practical environ-
ment, the OS encounters many TSs; thus, the number of states
related to the TSs changes continuously. However, DNN has
only a fixed-dimensional input. As a result, to handle the
multi-ship encounter situation, in [122], the last five records
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Fig. 7. Problems considered in ASV controller design

of detected distances were used as input. In [117], the input
dimension of DNN is set to four by categorizing the TSs into
four regions defined by COLREGs. Gao et al. [125] combined
LSTM and sequence conditional GAN to learn 12 types of ship
encounter modes from AIS data and make an anthropomorphic
decision to avoid ship collisions.

VII. DEEP LEARNING DRIVEN CONTROL SYSTEMS

A. Definition and Key Problems

A motion controller of a surface vehicle obtains input
references from the guidance system, calculates the differences
in the input references and the actual output values correspond-
ingly, and gives commands to the activators such as thrusters
and rudders. Fig. 7 shows the problems that existing studies
generally focus on to design a proper ASV controller. The
details are as follows.

1) ASV Modeling: ASV modeling requires the description
of the motion of surface vehicles, which is divided into kine-
matics and dynamics. Kinematics only considers geometrical
aspects of motion, and dynamics is the analysis of the forces
causing motion. The vast majority of studies confine surface
vehicles into three DOFs, since the roll and pitch motions are
negligible in many water environments. As shown in Fig. 2,
the moving coordinate frame that is attached to the vessel is
called the body-fixed reference frame,

∑
xbybObzb. The origin

of the body-fixed frame is chosen to coincide with the center
of gravity of the vessel. Moreover, the ASV kinematic model
of the body-fixed frame is described relative to an inertial
reference frame as follows:

η̇ = R(η)v, (1)

where η = [x y ψ]T ∈ R3 denotes the position and heading
angle of the vessel in the inertial frame, v = [u v r]T ∈ R3

denotes the surge velocity, the sway velocity and the angular
velocity in the body-fixed frame, and R(η) = [cosψ −
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TABLE II
MAIN CONTROL TECHNIQUES [37]

Control Techniques Examples

Classical Control Methods Proportional-Integral-Derivative (PID)
Recursive Control Backstepping
Adaptive Control NN Adaptive Control
Hierarchical Control System
Intelligent Control Neural Networks (NN)

Bayesian Probability
Genetic Algorithms
Fuzzy Logic
Machine Learning
Evolutionary Computation

Optimal Control Linear-Quadratic-Gaussian Control (LQG)
Model Predictive Control (MPC)

Robust Control H-infinity Loop-Shaping
Sliding Mode Control (SMC)
Dynamic Surface Control (DSC)

Stochastic Control
Energy-shaping Control
Self-organized Criticality Control

sinψ 0; sinψ cosψ 0; 0 0 1]T is the transformation matrix
converting a state vector from the body-fixed frame to the
inertial frame.

Following the notation developed by Fossen [126], the
nonlinear dynamics of surface vessels is described by the
following differential equation.

Mv̇ +C(v)v +D(v)v = τ + τenv, (2)

where M ∈ R3×3 is the positive-definite symmetric mass and
inertia matrix, C(v) ∈ R3×3 is the skew-symmetric vessel
matrix of Coriolis and centripetal terms, D(v) ∈ R3×3 is the
positive-semidefinite drag matrix, τ = [τu τv τr]

T ∈ R3 is the
applied forces and torques generated by propellers in a body-
fixed frame, and τenv ∈ R3 is the environmental disturbances
from the winds, currents and waves.

According to the thruster configuration of a vessel, the
actuation force and moment vector τ can be written as

τ = Bu, (3)

where B ∈ R3×nu is the control matrix that describes the
thruster configuration and u ∈ Rnu is the control vector that
represents the forces generated by the propellers, where nu is
the dimension of the control vector.

Furthermore, by combining (1), (2) and (3), the complete
dynamic model of the vessel is reformulated as follows:

q̇(t) = f(q(t),u(t)), (4)

where q = [x y ψ u v r]T ∈ R6×1 is the vessel state
vector and f(·, ·, ·) : Rnq × Rnu −→ Rnq denotes the
continuously differentiable state update function. The system
model describes how the full state q changes in response to
applied control input u ∈ Rnu .

2) Controller Design: A controller can be built based on
classical, optimal, adaptive, intelligent, robust, and sliding
mode control methods, or a combination of these techniques,
as listed in Table II.
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Fig. 8. Motion Control Scenarios, (a)-(d) refer to [127]

3) Actuation Capabilities: A vehicle with full actuation
can control all its DOFs simultaneously independently; oth-
erwise, the vehicle is underactuated. As the most common
configuration among ASVs, underactuation makes the design
of controllers much more difficult compared to actuated ASVs
because only the surge and yaw axes are directly actuated
with propellers and rudders. There are no actuators for direct
control of sway motion for actuated ASVs.

4) Motion Control Scenarios: Many motion controllers are
designed to solve one or more specific problems in different
scenarios to accomplish their specified tasks. In general,
depending on what motion information and constraints are
available as a priori, they can be categorized into point
stabilizing, target tracking, trajectory tracking, path following,
maneuvering, and berthing. The schematic diagrams are shown
in Fig. 8, and we describe each motion control scenario below.
• Point Stabilization: The objective is to position and orient

the ASV in fixed target operations without time constraints
under changing ocean disturbances [128]. For underactuated
ASVs, only discontinuous or smooth time-varying control
is possible if all three coordinates are stabilized [36]. The
thruster-assisted position mooring system (PM) for anchored
vessels and the dynamic positioning system (DP) for free-
floating vessels are two main types of positioning systems for
traditional vessels [128]. PM consumes less energy because
it usually has many anchor lines for each platform. The DP
system uses only actuated thrusters to accurately maintain
the position and heading of the ASV at a fixed location or
on a predetermined track. DP has gained increasing attention
because it easily changes position and is adapted to various
ocean environments.
• Target Tracking: The goal is to track the motion of static or

dynamic targets without knowing future information about the
motion of the target [129]. Related spatio-temporal constraints
must be considered simultaneously.
• Trajectory Tracking: This refers to the ability to follow

a specified path at a desired forward speed with a time con-
straint. Therefore, it is possible to consider the spatiotemporal
constraints related to the target separately [130].
• Path Following (also called track keeping, path keeping,

or course keeping): The objective is to follow a predefined
path with constant forward velocity that only involves a spatial
constraint [130].
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• Manoeuvring: As a subset of the path following [127],
the objective of maneuvering is to steer the ASV along a
predefined path, while controlling speed can be addressed
as a separate task [131]. The maneuvering problem can be
divided into geometric and dynamic tasks. The first is similar
to the following path, and the second assigns a time, speed, or
acceleration along the path. In contrast, the tracking problem
merges the above two tasks into a single task.

• Berthing: A ship should be able to stop near the berthing
point at low speed [132]. As one of the most difficult problems
in automated ship control, it is almost impossible to consider
all possible situations during berthing due to the influence
of unpredictable environmental disturbances. In more extreme
cases, with drastic reduction in ship maneuverability, the
signals of ship motion and noise are almost the same, making
it difficult to adjust the rudder angle.

5) Practical Issue: Model uncertainties and constraints are
commonly considered issues. To address nonlinear systems
with uncertainties and constraints, model-free methods such
as DNNs and fuzzy logic controllers are widely used.

Model Uncertainties: They are usually caused by unknown
dynamics [133]–[135], underactuated ASVs [136], high-speed
maneuvering situation [137], sensor errors [134], or envi-
ronmental disturbances [138], which may introduce unknown
parameters, terms, or functions into an ASV control system.

Constraints: Various constraints widely exist in most phys-
ical systems, such as input / output control signals, velocities,
performance and communication constraints [139]. Control
systems must address these limits and constraints, or the
control performance will degrade, leading to control failure
or even potential collisions.

• Input Control Signal Constraints: In practical control
systems, feedback control systems are inevitably subject to
actuator saturation/input saturation, which means that the
control torques are constrained due to the physical limitations
of actuators. If the control signals generated by the controller
exceed a certain range, the tracking performance for the
closed-loop system cannot be guaranteed.

• Output Control Signal Constraints: ASV outputs are not
allowed to exceed a certain constrained distance from the
predefined path; that is, the range of the output error is limited
[136]. Such constraints are crucial for system performance and
ASV safety, especially in narrow waterways.

• Velocities Constraints: In certain real scenarios, an under-
actuated ship moves in the open sea with limited forward and
angular velocity. Therefore, velocity constraints are considered
in some studies [140].

• Performance Constraints: To achieve steady-state tracking
performance, the prescribed transient performance (e.g., pre-
determined convergence rate) is important in many practical
applications [141]. For example, angle and LOS range errors
should always stay within predefined regions.

• Communication Constraints: Communication resources
are limited in a real maritime environment. Therefore, event-
triggered control methods, which only update actuator state
if a particular event occurs or a given condition is met, have
been studied by many researchers [142]–[144].

B. Control with Deep Learning Model
DNN and DRL are model-free estimators that map con-

ditions to actions and are widely employed to develop robust
adaptive controllers for uncertain nonlinear systems to estimate
model uncertainties or generate a control signal. All controllers
based on the DL model or related to the DL model are
compared in Table III and categorized into 6 typical motion
control scenarios. Several key works are described in the
following paragraph for different purposes of the DL model.

1) Model Uncertainties Estimation: The unknown param-
eters, terms or functions introduced by unknown dynamics,
underactuated ASVs, high-speed maneuvering situations, sen-
sor errors, or environmental disturbances can be estimated by
DNN.
• Point Stabilization: DNN has been applied to estimate

the model uncertainties for both PM systems [145] and DP
systems [142], [146], [147]. Actuator faults are frequently
encountered for DP ships with multiple actuators. Zhang et
al. [142] designed a DP control method that considers actuator
faults and limited communication resources. The uncertainty
of these subsystems was approximated by RBF, and the
computational complexity was reduced by DSC, which greatly
reduced gain-related adaptive parameters.
• Target Tracking: Without knowing the target velocity

information, Liu et al. [148] used the extended state observer
(ESO) and DNN to estimate the dynamics of the target and
follower, respectively. Furthermore, the control torques are
bounded by integrating the neural estimation model and a
saturated function.
• Trajectory Tracking: DL model is capable of learning the

unknown dynamics for fully actuated ASVs [10], [15], [133],
[134], [137]–[139], [141], [149], [151], [153], [155], [157],
[161], [162], [164], estimating the unknown dynamics for
underactuated ASVs [135], [136], [140], [154], [156], [158]–
[160], [163] and approximating unknown disturbances [10],
[11], [139], [149], [153], [159], [162].

DNNs are usually adopted to estimate the term of the control
law, which is formed by unknown parameters, such as the
inertia matrix M , the Coriolis and centripetal terms matrix
C(v), the damping matrix D(v), and the unknown vector of
gravitational and buoyancy forces and moments g(η) [10],
[133], [134], [139], [149], [151]–[153], [155], [157]. DNNs
can also estimate unmeasurable velocities [161].
• Path Following: To address arbitrary uncertainties, DNN is

used to approximate unknown dynamics [143], [144], [166]–
[169], [169], [172], [173] and disturbances [167], [168]. For
most of the existing work, researchers focused on control-
ling underactuated ASVs because they are characterized by
strong nonlinearity, uncertainty of the model parameter, and
constraints of the control input saturation, and are easily
influenced by external interference [143], [144], [144], [166],
[168], [169], [172], [173].

In DNN-based backstepping design, Li et al. [144] com-
bined a fast power reaching law with RBFNN in the controller
design to accelerate the convergence rate of tracking error and
achieve finite-time stabilization of the controller. The DSC
technique can reduce the computational burden introduced by
backstepping. In the DNN-based DSC design, DNN estimated
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TABLE III
THE COMPARISON OF DL-BASED OR RELATED CONTROLLERS

Applied DL DL App. Main Control Techniques Proposed Model DIS. CON. ACT. REF.
Point Stabilization

MLP E. Backstepping Robust adaptive position mooring control ✓ In. - [145]
RBF E. Backstepping Robust adaptive nonlinear controller ✓ - - [146]
RBF E. Backstepping Robust adaptive output feedback control scheme ✓ - - [147]
RBF E. Backstepping Robust neural event-triggered control ✓ Com. Act. [142]

Target Tracking
MLP E. ESO Target tracking controller ✓ In. Un. [148]

Trajectory Tracking
MLP E. Backstepping Stable tracking controller ✓ - Act. [10]
RBF E. Backstepping Robust adaptive tracking controller ✓ In. - [149]
WNN G. WNN Neural and auxiliary compensation controller ✓ - - [150]
MLP E. NN&PD Adaptive output feedback controller ✓ - - [137]
RBF E. Backstepping Adaptive NN controller ✓ Out. Act. [139]
One-layer E. Backstepping NN controller ✓ - - [151]
RBF E. Backstepping Adaptive output feedback NN tracking controller ✓ - Act. [152]
One-layer E. Backstepping NN based tracking controller ✓ In.Vel. Un. [140]
FNN E. SMC Adaptive robust fuzzy neural controller ✓ - - [153]
MLP E. NN Saturated neural adaptive robust controller ✓ - Un. [154]
RBF E. HGO Adaptive NN controller Out. Act. [155]
RBF E. NN Adaptive output feedback controller ✓ - Un. [156]
RBF E. Backstepping Trajectory tracking controller ✓ - Act. [11]
RBF E. Backstepping Sign of the error based adaptive NN controller ✓ Per. Act. [141]
RBF E. DSC & backstepping Adaptive neural controller ✓ Per. Un. [136]
RBF E. SMC & backstepping Adaptive sliding mode controller ✓ In. Un. [133]
RBF E. SMC & DSC Adaptive dynamic surface controller ✓ In. Act. [134]
RBF E. Backstepping & HGO Neuro-adaptive trajectory tracking controller ✓ - Un. [135]
DRL G. DRL Mode-reference RL controller ✓ - - [138]
RBF E. DSC Robust adaptive controller ✓ In.Out. - [157]
RBF E. DSC Adaptive NN controller ✓ In. Un. [158]
DRL G. DRL Actor-critic NNs based controller ✓ Out. Un. [159]
RBF E. Backstepping Robust adaptive controller ✓ - Un. [160]
RBF E. Backstepping Adaptive neural output feedback controller ✓ - - [161]
RBF E. SMC BF-based adaptive NN SMC ✓ - - [162]
DRL G. DRL Data-driven performance-prescribed RL controller ✓ Per. - [16]
RBF E. SMC Fixed-time SMC ✓ Vel. Un. [163]
MLP E. MPC PWM-driven model predictive controller ✓ - - [164]
MLP%DRL E.&G. DRL RL based optimal tracking controller ✓ Vel. - [15]

Path Following
RBF G. RBF Ship steering control system - - [165]
RBF E. DSC Adaptive NN path-following controller ✓ - Un. [166]
RBF E. Backstepping Robust adaptive RBFNN controller ✓ In. - [167]
RBF E. DSC Adaptive NN-DSC controller ✓ In. Un. [168]
RBF E. RBF Robust neural path-following controller ✓ Com. Un. [169]
DRL G. DRL DRL-based path following controller ✓ - - [14]
RBF E. Backstepping Adaptive NN event-triggered controller - - Un. [144]
DRL G. DRL RL-based controller - Un. [170]
DRL G. DRL Smoothly-convergent DRL method ✓ - Un. [19]
RBF E. DSC Composite neural learning fault-tolerant controller ✓ Com. Un. [143]
Projection NN G. MPC Quasi-infinite horizon MPC controller ✓ Vel. Un. [171]
RBF E. DSC&backstepping Adaptive NN control ✓ Out. Un. [172]
Critic NN E. Backstepping Dynamic path-following controller ✓ Vel. Un. [173]

Manoeuvring
RNN G. RNN RNN manoeuvring simulation model - - [12]

MLP E. PID/PD Self-tuning NN based PID controller - - [174]
[175]

RBF G. RBF Course keeping and roll damping controller ✓ - - [176]
LSTM E. LSTM DL based dynamic model identification method In. - [177]
DRL G. DRL Concise DRL obstacles avoidance control ✓ Vel. Un. [115]

Berthing
MLP G. MLP Multi-variable Neural Controller ✓ - - [132]
MLP G. MLP&PD NN and PD controller ✓ In. - [178]
MLP G. MLP NN controller - - [179]
RBF E. DSC Auto-berthing control scheme ✓ In. Un. [180]
MLP G. MLP NN based automatic ship docking ✓ Vel. - [25]

Notes: 1. (-) not mentioned; (✓) considered. 2. (DL App.) Applications of DL, including Model Uncertainties Estimation [E.], Control Signals Generation
[G.]; (DIS.) Disturbance; (CON.) Constraints, including constraints on Input control signal [In.], Output control signal [Out.], Velocities [Vel.], Performance
[Per.], Communications [Com.]; (ACT.) Actuated [Act.] or Underactuated [Un.]; (REF.) References.
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the unknown system functions of the proposed controller to de-
velop uncertain nonlinear multi-input-multiple-output (MIMO)
time-delay systems [166], [168].

• Manoeuvring: Among the 6-DOF of a ship, the roll motion
has gained the most attention because large rolling motions
may capsize a ship. Therefore, DNN was applied to estimate
the unknown dynamics to reduce the rolling motion [174],
[175].

• Berthing: When approaching a port, a ship is very difficult
to control and is easily influenced by disturbances and winds
at a very low speed, making prediction or representation using
differential equations difficult because the signal-to-noise ratio
is too low for any controller to separate it from the real
motion of the ship [132]. The automatic berthing controller is
a complicated MIMO system that can simultaneously evaluate
many factors, such as the current speed of the ship, the
angle of berth and the distance to the pier. DNN can be
used to reconstruct uncertain modal dynamics and unknown
disturbances [180] or learn any nonlinear MIMO system and
respond to any unknown situation if enough input and output
data are available for training [25], [132], [178], [179].

2) Control Signals Generation: Data driven models such
as DNN and DRL can generate control signals without an a
prioir model [127].

• Trajectory Tracking: Wang et al. [16] proposed an RL
control algorithm with a DNN-based actor-critic structure to
establish a data-driven method-based optimal control scheme,
which only requires ASV input-output data pairs. Here, the
critic and actor DNNs learned the optimal policy and cost
function simultaneously.

• Path Following: Without dependency on prior knowledge
of dynamic modeling, DNN [165] and DRL [14], [19], [170]
can generate the control signal directly. DRL can learn from
the interactions between the agent and the environment to find
the best policy without knowing any information in advance.
Based on a two-DQN structure, Zhao et al. [19] reduced the
complexity of the control law by designing computationally
efficient exploring and reward functions.

• Manoeuvring: To adapt to various and complex naviga-
tion requirements, Cheng et al. [115] used the DRL method
with a DQN architecture to control underactuated ASVs.
The objectives and constraints, including destination, obstacle
avoidance, target approach, speed modification, and attitude
correction, were considered in the avoidance reward function,
the input of which is provided by a CNN-based data fusion
module, and the outputs of the DRL network were the propul-
sion surge force and the yaw moment.

• Berthing: Im et al. [179] proposed an artificial NN con-
troller that could automatically control the ship during berthing
at the original port and other ports. The initial conditions of the
inputs in the head-up coordinate system of other ports should
be similar to those of the training data in the original port.
Then, a DNN controller can adapt to different ports without
retaining based on two key inputs, that is, the relative bearing
and distance from the ship to the berth.

(a) Typical scenarios [129]
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Fig. 9. Communication and Networking of Autonomous Systems

VIII. DEEP LEARNING IN COOPERATIVE OPERATIONS

To carry out complex and large-scale missions in maritime
cooperation scenarios, cooperative control of multiple ASVs
offers increased efficacy, performance, scalability, and robust-
ness and the emergence of new capabilities [127]. Further-
more, as an indispensable part of future transportation systems,
autonomous systems are supported by the internal and external
Internet of Things (IoT), big data platforms, and communica-
tion infrastructures. As shown in Fig. VIII, taking advantage of
advanced communication technologies, together with multiple
underwater and air vehicles, intelligent cooperative maritime
operations have emerged. A considerable portion of ship
intelligence will consist of a DL-based framework, especially
for networks that are trained by image-based information and
navigational actions rather than system parameters [9]. In this
section, several issues regarding cooperative operations based
on the application of DL methods are discussed. Table IV
compares coordinated control methods based on DL or related
to DL.

A. Cooperative Control

Cooperative control aims to force a group of ASVs to
achieve and maintain the desired formation geometry by
designing path-following, trajectory-following, and target-
following controllers while ensuring that the agents complete
the predefined task. Leader-follower formation control and
leaderless formation control are two common strategies of
cooperative control methods. The difference between these
methods lies in whether the group follows a physical leader
ASV or reaches a common value through local interaction
[181]. In this survey, existing results can also be classified
into coordinated controls guided by a trajectory, a path and
a maneuvering guide according to various types of reference
signals, which can be further classified into three architectures
according to the available communication bandwidths and
sensing abilities, i.e., centralized, decentralized and distributed
controls. In addition to sophisticated guidance and control
methods, the challenges of cooperative control systems with
multiple ASVs include model uncertainties, environmental dis-
turbances, communication constraints, and collision avoidance
(avoiding static and dynamic obstacles while maintaining the
predefined formation pattern) [127].

1) Leader-Follower Formation Control: Path-guided coor-
dinated controls [182], [183] and trajectory-guided coordinated
controls [13], [184]–[190] are two basic tasks for DL-based
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TABLE IV
THE COMPARISON OF DL-BASED OR RELATED COOPERATIVE CONTROL METHODS

App. of DL Controller Proposed Model ARC. DIS. CON. ACT. REF.
Leader-follower formation control - Path-guided coordinated controls

MLP / E. Backstepping NN-based robust adaptive formation controller Cent. ✓ - Un. [182]
MLP / E. DSC Adaptive dynamic surface control Cent. ✓ - Un. [183]

Leader-follower formation control - Trajectory-guided coordinated controls
RBF / E. Adaptive robust control Leader-follower formation tracking controller Cent. ✓ In. Un. [184]
MLP / E. Adaptive robust control Output feedback formation control Cent. ✓ In. Act. [13]
RBF / E. DSC Robust adaptive formation control Cent. ✓ - Un. [185]
RBF / E. DSC & Backstepping Adaptive platoon formation control Dece. ✓ Per.CA Act. [186]
RBF / E. DSC & Backstepping Decentralized adaptive formation control Dece. ✓ Per.CA Act. [187]
MLP / E. DSC & Backstepping Output-feedback formation tacking control Dece. - Com.CA Act. [188]
RBF / E. Backstepping Adaptive finite-time event-triggered control Cent. ✓ Out.Per. Act. [189]
RBF / E. Fault-tolerant control Neural finite-time formation control Cent. ✓ - Un. [190]

Leaderless formation control - Path-guided coordinated controls
MLP / E. DSC Cooperative path following controllers Dist. ✓ In. - [191]
MLP / E. DSC NN based adaptive dynamic surface control Dece. ✓ Com. - [192]
MLP / E. Backstepping Adaptive bounded neural network controller Dist. ✓ In. Un. [193]
MLP / E. Model-free control Integrated distributed guidance and learning control Dist. ✓ - Un. [194]
DRL / G. DRL USV Formation and Path-Following Control Dist. - - Un. [195]

Leaderless formation control - Trajectory-guided coordinated controls
MLP / E. Backstepping Distributed adaptive controller Dist. ✓ - - [181]
RBF / E. DSC Distributed robust adaptive cooperative control Dist. ✓ In. - [196]
MLP / E. Backstepping Distributed cooperation formation control Dist. ✓ Per. Act. [197]
WNN / E. Backstepping Distributed coordinated tracking control Dist. ✓ CA Un. [198]
MLP / E. DSC & Backstepping Adaptive neural formation control Dece. - CA Un. [199]
MLP / E. Distributed coordinated control Event-triggered distributed coordinated control Dist. ✓ In. Act. [200]
MLP / E. Event-triggered control Event-triggered adaptive neural fault-tolerant control Cent. ✓ In. Un. [201]
RBF / E. SMC Finite-time distributed formation control Dist. ✓ In. Act. [202]

Leaderless formation control - Maneuvering-guided coordinated controls
RNN / E. DSC Containment maneuvering controller Dist. ✓ - Act. [203]
RNN / E. TD Cooperative path maneuvering controller Dist. ✓ - Un. [204]
RNN / O. Fuzzy kinetic control Distributed maneuvering controller Dist. ✓ Vel. - [205]
RBF / E. TD Event-triggered modular-ISS NN controller Dist. ✓ - Act. [206]
RNN / O. Distributed control Safety-critical containment maneuvering control Dist. ✓ In.CA Un. [207]

Notes: 1. (-) not mentioned; (✓) considered. 2. (App. of DL) The applied DL model and the applications of DL model, the applications include Model
Uncertainties Estimation [E.], Control Signals Generation [G.], Optimization [O.]; (ARC.) Architecture in coordinated control, including Centralized control
[Cent.], Decentralized control [Dece.], and Distributed control [Dist.]; (DIS.) Disturbance; (CON.) Constraints, including constraints on Input control signal
[In.], Output control signal [Out.], Velocities [Vel.], Performance [Per.], Communications [Com.], Collision Avoidance [CA]; (ACT.) Actuated [Act.] or
Underactuated [Un.]; (REF.) References.

leader-follower formation control. The DL model is generally
applied to estimate the uncertainties of the model, i.e., to
compensate for unknown disturbance [13], [184], [185], [189],
unknown dynamic [183], [184], [186]–[190], or unknown
velocities [182], [183].

Path-guided Coordinated Controls: Existing research at-
tempted to address unknown dynamics, unmodeled distur-
bances, velocity estimations, and system stability in path-
guided coordinated control tasks. Peng et al. [182], [183]
proposed a DNN-based formation control that only uses the
LOS range and angle measured by local sensors and can
compensate for both uncertain leader and local dynamics.

Trajectory-guided Coordinated Controls: This research
mainly focuses on the problems of unmodeled dynamics [13],
[184], [186]–[190], unknown disturbance [13], [184], [186],
[187], [189], actuator saturation [13], [184], system stability
[13], [184], [186], [188], [190], velocity estimation [13], [190],
collision avoidance [186]–[188], connectivity maintenance
[186], [188], performance constraints [186], [187], computa-
tional effort reduction [185], communication reduction [188],
[189], and output constraints [189].

Taking into account the collision constraints, Dai et al. [186]
limited the ASV position outputs to a given range and applied

the prescribed performance control to guarantee that formation
errors remained always within the predefined regions. Based
on the DSC technique, the backstepping procedure and Lya-
punov synthesis, adaptive formation control integrates DNN
and disturbance observers to estimate unknown dynamics and
disturbances, respectively.

To reduce communication cost, Dong et al. [188] considered
a one-to-one communication topology with a decentralized
adaptive output feedback formation tracking controller, where
DNN was used to approximate uncertain dynamics.

2) Leaderless Formation Control: The leaderless formation
refers to a situation in which all agents reach a common value
through local interaction with desired relative deviations and
there is no physical leader among agents [181]. Therefore, the
single point failure problem, which occurs when a leader does
not work and the entire fleet cannot maintain a formation, can
be avoided. There are three basic tasks for DL-based leaderless
formation control in this part, i.e., path-guided [191]–[195],
trajectory-guided [181], [196]–[202], and maneuvering-guided
coordinated controls [203]–[207]. The DL model is generally
applied to estimate the uncertainties of the model, that is,
to compensate for unknown disturbance [191], [192], [198],
[202]–[204], unknown dynamic [181], [191], [192], [194],
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[196]–[201], [203], [204], [206], unknown input coefficients
[200], to solve the quadratic optimization problem [205], [207]
or to generate the control signal [195].

Path-guided Coordinated Controls: Based on different
assumptions about what information is known or unknown
by vehicles, existing research has made efforts to address un-
known dynamics [191]–[193], unmodeled disturbances [191]–
[193], [200], unknown kinetic models [194], input saturation
[191], [193], velocity estimation [192], [194], communication
reduction [191], [192], cyber attack [193], system stability
[191]–[193], and control signal generation [195].

With partial knowledge of the reference velocity, Wang et
al. [191] designed a cooperative path following control, which
used the DNN-based DSC technique to estimate unknown
dynamics and disturbances, used an auxiliary design to handle
input saturation, and applied a distributed speed estimator
to reduce the amount of communication. Cyberattacks exist
widely in real-world communication networks. To achieve a
desired formation during a state-dependent cyberattack varying
in time, Gu et al. [193] developed a path update law based
on a synchronization scheme and an adaptive control method.
DNN was used to approximate the uncertainties of the model
and environmental disturbances.

The DRL model is able to resolve the problem of following
the ASV formation path by designing reward functions that
consider the velocity and error distance of each ASV related
to the given formation [195]. ASVs are able to automatically
and flexibly adjust their formation under the proposed DRL-
based method.

Trajectory-guided Coordinated Controls: Existing stud-
ies on trajectory-guided coordinated controls usually attempt
to solve the problem of unmodeled dynamics [196]–[202],
unknown disturbance [196]–[198], [200]–[202], actuator satu-
ration [196], [201], [202], system stability [181], [196]–[202],
velocity estimation [199], collision avoidance [198], [199],
connectivity maintenance [199], unknown input coefficients
[200], computational effort reduction [196], [197], [201],
[202], self-organized aggregation [198], and communication
reduction [200].

Furthermore, to reduce computational complexity, re-
searchers tried to decrease the number of learning parameters
of DNNs with the minimum learning parameter algorithm
[196], [202], self-structured NNs [197], or the virtual param-
eter leaning algorithm [201]. To save system resources, peri-
odic communication-based event-triggered mechanisms were
proposed in [200]. The desired path was predicted by the
last event-triggered velocity during the triggering interval, and
the model uncertainties and unknown input coefficients were
estimated by a neural predictor based on concurrent learning.

Maneuvering-guided Coordinated Controls: Existing
studies tried to solve the following problems in maneuvering-
guided coordinated control scenarios: Unmodeled dynamics
[203]–[207], environmental disturbances [203]–[207], system
stability [203]–[207], collision avoidance [207], input satura-
tion [207], and communication reduction [206].

ASV has only limited resource, therefore, it is very practical
to design a resource-constrained system. Instead of periodi-
cally updating the communication and actuation of systems,

Zhang et al. [206] designed an event-triggered DNN controller
that decreased the communication burden of both followers
and leaders. Under distributed directed communication, the
actuator of each follower was updated when predetermined
events are triggered. They utilized DNN to identify uncertain
nonlinearities and introduced third-order linear tracking dif-
ferentiators to estimate derivative information of the virtual
control law.

Taking into account the collision constraints, Gu et al. [207]
addressed the avoidance of collisions between vehicles and
obstacles with input-to-state safe control barrier functions that
mapped the safety constraints in states to the constraints in
the control inputs. Furthermore, to calculate the forces and
moments, the quadratic optimization problem was solved using
an RNN-based neurodynamic optimization approach.

3) Data-driven IoT System: Modern industrial systems
with various IoTs generate rich maritime data that should
be appropriately analyzed to improve both the efficiency and
reliability of existing systems. Perera et al. [9] designed a
general framework for autonomous ship navigation for ASVs
to achieve the required level of ocean autonomy. Each on-
board ASV application may be equipped with an on-board
decision-making process and is monitored by on-board and
onshore IoT under a DL-type framework.

4) Maritime Traffic Monitoring and Prediction: Forecast-
ing future traffic in a complex maritime environment can
help design ship routes, reduce traffic jams, and improve
the efficiency of traffic management, especially for inland
waterways. Surface vehicles have different dimensions, shapes,
and boundaries in physical form and can travel in a two-
dimensional spatial surface, making maritime traffic monitor-
ing and prediction more difficult [23]. The given maritime
region can be divided into grids, and then the inflow and
outflow of each grid can be predicted. To predict the inflow
and outflow of all grids, Zhou et al. [208] studied the spatial
and temporal dependencies of the vessel flows by extracting
the spatial features of the patterns of maritime traffic with
CNN and learning the temporal correlation of the extracted
patterns using LSTM.

B. Communication and Networks

The ecosystem elements in cooperative operations include
ASVs, UAVs, and AUVs. Advanced equipment is capable of
collecting large amounts of data volume in different forms,
such as images, videos, audio, and text, which introduces
a great burden for the maritime service. Yang et al. [209]
proposed a software-defined networking (SDN)-based frame-
work that applies DRL to solve the overfitting and curse of
dimensionality by establishing a mapping relationship between
the acquired information and the optimal data transmission
scheduling strategy in a self-learning way.

C. Energy Efficient Operations

Reducing the speed of ships is the most effective way to
improve energy efficiency. However, the best real-time speed
of the ship is related to several factors, including future envi-
ronmental conditions. In [210], data from AIS, GPS, and fuel,
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rotation, temperature, and environment sensors were obtained
by continuous time sampling. Then, on the basis of LSTM,
these data were used to calculate the fuel consumption rate of
ships in real time. In addition, an optimization algorithm was
presented, which is called the reduced space search algorithm,
to minimize fuel consumption and the total cost of a voyage.

IX. CURRENT CHALLENGE AND FUTURE PERSPECTIVES

This section presents current challenges and potential future
directions for NGC systems, cooperative operation, application
scenarios, and DL limitations.

A. ASV Prototypes and Their Applications

We comprehensively compare the NGC system, communi-
cation method, mechanical design and applications of 51 ASV
prototypes, which can be found on the author’s website1. By
reviewing typical ASV prototypes and comparing their key
features, we can see the driving force of ASVs.

B. NGC system

1) Navigation: DL-based methods have dramatically im-
proved state-of-the-art perception in recent years [21]. How-
ever, perception remains very challenging due to harsh mar-
itime environments.

Environmental Perception: For safer maritime navigation,
ASVs must be aware of the surrounding environment in real
time. An open dataset with large amounts of labeled data for
marine navigation is not yet available. Therefore, most re-
search on DL-based marine environmental perception focuses
on remote sensing images that have open and labeled datasets.
Image preprocessing, segmentation, and target recognition
methods are the main topics of remote sensing processes. DL
methods can extract and fuse low- and high-level features
from raw datasets to find the complex relationship between
the data by self-learning. Based on the growing interest in
object detection on SAR images in the last 3 years, DL-based
methods have been explored in depth to solve the inherent
problems of remote sensing images, such as detecting dense
and overlapping objects, small and densely clustered ships,
and complex backgrounds [76]. However, to detect objects
with complex backgrounds and multiple shapes in marine en-
vironments, learning robust and discriminative representations
from complex remote sensing images is still very challenging
compared to natural scene images [211].

In addition, for the data collected from onboard sensors,
such as optical, infrared, radar images, and point clouds
data, existing methods regarding image classification, object
detection, and segmentation can be well adapted to maritime
offshore environment, which is a much more simple scenario
in contrast to complex road conditions for autonomous cars.
In marine environments, the vibration interference generated
by non-stationary surface platforms (buoys, sailing ships, etc.)
can be easily removed. DL techniques have been shown to
outperform other conventional methods in accurate and robust

1The comparison of commercial and research ASV projects,
https://yuanyuanqiao.github.io/publications/journal/qiao2022survey appendix.pdf

detection [75], and performance can be improved with more
labeled data [74]. DL-based methods are expected to be
adapted to complex computer vision problems for navigation
in marine environments, such as vision-based multisensor
fusion for cooperative operations and berthing.

State Estimation: Estimating the states of focal ASV
and other ASVs requires a data fusion technique, which is
very important for path following, trajectory tracking, and
multi-vehicle cooperation. Existing research mainly focuses
on estimating the state of ASV with time series data, such
as trajectory and motion data collected from AIS. Very few
researchers try to fuse maritime video and AIS data to better
understand the on-site traffic situation awareness information
[108]. Due to the strong capability in feature extraction and
data representation, DL-based methods have already achieved
high accuracy on data fusion tasks, especially for complex and
imprecise data and image. How to extract and fuse features of
maritime multi-sensor data with DL methods is very challeng-
ing, especially when the collected data is discontinuous and
incomplete, which can be solved by the application of CNN,
LSTM, AE, attention, and other DL models. Another possible
research direction is to detect out-of-distribution (OOD) sensor
data before fusion to achieve a better results. Furthermore,
understanding the semantic environment, which is receiving
increasing attention in the robotic field, can improve the
efficiency of the calculation. DL has made great progress
in image understanding and semantic segmentation and it is
anticipated that they will be applied to maritime navigation to
reduce the reliance on complex multisource data [44].

Future development of environmental perception and state
estimation for ASV navigation can still benefit greatly from
the existing results of other autonomous vehicles. Based on
transfer learning [212], the knowledge of other autonomous
vehicles can be utilized to navigate ASVs to further improve
the integrity level of ocean autonomy. In this article [9], the
DL-type mathematical framework is considered the best tool
for mimicking helmsman actions in ship navigation. However,
how corresponding decisions are made to support each ASV’s
different navigation situations is an open question.

2) Guidance: Traditional path planning methods can enu-
merate appropriate trajectories between two points for ASV
if all constraints, such as geographic features, static obstacles,
dynamics and kinematics of ASV and energy consumption,
have already been detected and considered. For complex
tasks with uncertain and incomplete information in constantly
changing environments, heuristic methods such as DNN can
achieve optimal solutions. For global path planning, DL-based
methods are able to learn patterns from massive historical data
[23]. In addition, DRL can learn to react by interacting with an
unknown environment to find the most efficient route for local
path planning. The DRL network is able to evaluate possible
behaviors and make the next move in a collision avoidance
scenario. Furthermore, DL-based methods are very promising
for addressing collision avoidance by analyzing complex and
ambiguous situations when ASVs encounter other ships [24]
and can learn behavior patterns from historical data [115]. The
challenges in terms of DL application in guidance systems are
discussed below.
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COLREGs Compliance: The risk assessment and solution
for COLREG-compliant collision avoidance in multiple-ship
encounter situations cannot be solved by conventional meth-
ods if unknown disturbances and uncertain ship motions are
impossible to ignore [24]. Most current experiments focus on
simple encounter situations that only consider the OS and one
TS based on Rules 6, 8, 13-19 of COLREGs. DL-based meth-
ods have already made some promising progress in collision
avoidance, especially for situations that need to comply with
COLREGs, which require human-like decision-making [58],
[117], [122], because they are capable of extracting high-level
characteristics from complex environments and learning the
relationship between situations and possible actions. However,
the following problems are very challenging.

• The design of reward functions. The architecture of a
DRL network requires careful design and is usually based
on experience and practice, rather than mathematical rea-
soning, resulting in inflexible application in real systems.

• No universal rule for collision avoidance. The highly
complex dynamics under different environmental condi-
tions vary with the types and sizes of ships that require
specific rules for each encounter.

As a result, apart from proposing a model that makes
human-like decisions to comply with COLREGs, designing
maritime traffic rules that adapt to modern maritime environ-
ments has become a more reachable goal in recent years. Then,
the DL model can be used to predict maritime traffic and the
trajectories of sailing ASVs, which is important for maritime
traffic management.

Decision Making: Real-time decision-making refers to the
ability to make appropriate decisions under practical maritime
conditions based on knowledge of the surrounding environ-
ment of the ASV. In collision avoidance [24], which has
challenges including uncertainties in ship motion models, rule-
compliant navigation systems, and unknown environmental
disturbances [42], it is very difficult to evaluate all possibilities
and find the optimal behaviors based on the massive data
collected by multiple sensors. On the one hand, nonlinear
methods are often computationally expensive, require a priori
knowledge of unknown states, and are driven by human
knowledge [213]. On the other hand, DL methods have already
made many processes in decision-making for autonomous ve-
hicles.In the future, DL-based integrated approaches for robots
are expected to reduce uncertainty in perception, decision-
making, and execution [65].

Cooperative Path Planning for Multiple ASVs: Multiple
ASVs can perform more complex tasks than a single ASV,
requiring the analysis of emergent behaviors, learning com-
munication, learning cooperation, and agent modeling. Con-
ventional cooperative methods are usually limited to discrete
actions and require handcrafted features, which might not be
suitable for real applications. On the other hand, DRL methods
can generate paths for multiple ASVs to keep the formation
shape robust or vary the shapes where necessary.

3) Control: Unlike cars or other modes of land transporta-
tion, one of the biggest problems for ASV is the hydrodynamic
water-body interaction. Although this interaction complicates
the problems of motion and control, DL-based controllers

are introduced as a potential solution. In general, DNNs are
required to estimate unknown parameters, terms, or functions
during ASV modeling. In addition, other approximators, such
as fuzzy systems, can also obtain similar results to DNNs.
However, the exact mathematical estimator may not be able
to adapt to complex sea environments [19]. For the DRL-
based model, the agent interacts with the unknown or poten-
tially partially unobservable environment and then iteratively
approximates the behavior policy that maximizes the agent’s
expected long-term reward in the environment. Although it has
gained much attention in the field of autonomous systems [18],
the DRL-based controller cannot yet support real-world ASV.
Most of the above work tests DRL-based control in simulation
environments, which provides a large-scale training dataset.
However, machine learning models usually perform poorly if
the data distributions of the training dataset and testing dataset
are not identically distributed; thus, ASV training in simulation
environments often fails to complete tasks in the real world.
A possible solution is to use transfer learning, which applies
an algorithm trained in one or more “source domains” to
a different (but related) “target domain” [212]. Knowledge
learned from other vehicles or other tasks can be used by
employing transfer learning, which requires fewer training data
for the current task. Therefore, pre-training agents on available
high-quality datasets and then fine-tuning them on collected
datasets can improve the performance of the model. However,
due to the lack of open datasets, the related research field is
still in its early stages.

Although RL-based controllers have been successfully ap-
plied to ASVs on sea trails, DRL-based controllers are still
in an early stage and can only be used to estimate the
parameters of a model that presents a physical system. More
complex problems, such as such constraints, have not yet
been considered. To construct a complete real-world ASV
system, better performance can be achieved by combining DL
and classical controllers such as MPC or PID [66]. All hard
constraints of the modeled system are estimated by DL, and
classical model-based control techniques provide a stable and
deterministic mode [24].

C. Cooperative Operations

A fleet of ASVs is able to complete more difficult tasks
than a single ASV. However, the design of the controller and
communication scheme for cooperative control of multiple
ASVs is very challenging, since ASVs must maintain desired
positions and orientations with predefined geometric shapes
[127]. Since the DL-based model has already been applied to
design collision-free cooperative controllers and communica-
tion protocols for multi-agents [213], improving these methods
for maritime environments is anticipated in the future. The
challenges of cooperative operations and the potential of DL
applications are discussed as follows.

1) Behavior Prediction: Massive information collected by
AIS provides an opportunity to discover the historical behavior
of fleets for the management of maritime traffic safety [23],
trajectory reconstruction, anomaly detection and vessel type
identification. In addition to a large amount of multi-source
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Fig. 10. An example of Internet of Ship scenario [215]

data stream, the inherent noise patterns and irregular time
sampling, and the influence of weather and current have also
increased the difficulty of analyzing AIS data. DL methods
have already been applied to road traffic prediction because
they can capture the spatial and temporal correlations of
trafficwhile simultaneously considering the influences [214].
Therefore, how to make the best use of the increasing amount
of AIS data has great significance for maritime cooperative
operations, which requires the assistance of advanced methods
such as DL.

2) Communications and Networks: GPS has provided a
high-performance navigational aid, and commercially avail-
able satellite communication receivers allow for almost instan-
taneous communication over most of the world. Networking
of ASVs and UAVs further expands the communication range
on the surface [5]. Furthermore, the network of smart intercon-
nected maritime objects has received a new concept term, the
Internet of Ships (IoS) [215], as shown in Fig. 10. The main
technical challenge for remote operation is the connectivity
between the vessel and the control facility. Possible solutions
are to build high-bandwidth and low-latency wireless networks
sufficiently and to reduce large-scale sensor data. DL-based
methods have already been used to design wireless networks,
compress data, and determine an optimal strategy for data
transmission [209]. These methods are expected to be applied
to future maritime network management and control.

D. Specific Application Scenarios

1) Smart Port: How ASVs will berth and maneuver around
densely trafficked ports has gradually become an imminent
problem for modern maritime security and management. Ex-
isting work has already applied the latest technologies to smart
ports [216]. There are many computer vision tasks in port,
such as container identification, image and object recogni-
tion, situational awareness, monitoring, and surveillance [215].
DL-based methods can help develop a fully automated port
with advanced sensing systems. Future work related to ASV
monitoring and management in ports, MASS docking and
departure, and loading and unloading are anticipated.

2) ASV in City: ASV may also be able to play an im-
portant role in the future of transportation in many coastal
and riverside cities, such as Amsterdam and Venice, where
the existing infrastructure of roads and bridges is always
extremely busy. The Roboat project [217] will develop a
logistics platform for people and goods, superimposing a
dynamic infrastructure in one of the world’s most famous
water cities. When ASVs move in narrow and crowded urban

environments, the requirements of autonomous systems, such
as control and obstacle avoidance, are much higher than those
of surface vehicles for open-water areas. Therefore, a DL-
based framework, especially DRL, could be a viable option
for ASV control and obstacle avoidance problems in these
challenging urban environments.

3) MASS: Related research is still in the conceptual stage
and focuses mainly on discussing the operation and safety of
MASS, including navigational risk [218], collision avoidance
[219], and human-system interaction in autonomy [220]. Most
of the navigation algorithms deployed on small ASVs cannot
be applied directly to MASS. Large ships need more sensors
than small ASVs to cover the very large MASS hull. Further-
more, MASS deceleration at moderate or high speeds, during
which time the capabilities of the thrusters are negligible,
requires more time and resistance. This makes the design
of the controller and collision avoidance methods for MASS
entirely different from other vehicles. The above-mentioned
problems may be overcome by mathematical frameworks
based on DL supported by the decision support layer [9]. More
specifically, communication and computation infrastructure is
needed by adopting an information technology/information
system (IT/IS) based on real-time data-driven decision support
in the maritime industry. In addition, a large amount of ship
performance and navigation data collected and exchanged by
onboard and onshore IoT should be integrated with modern IT
systems and DL algorithms. However, the limited availability
of testing ships and fields has slowed the study of practical
applications for MASS in the scientific research field.

E. The Limitation of DL

DL is considered one of the most promising methods
for feature learning [211]. Its limitations are as follows and
possible solutions can be found in paper [64].

• Learning with little or no external supervision: Super-
vised learning requires a lot of labeled data. DRL requires
far too many experiments and handcrafted rewards.

• Coping with test examples that come from a dif-
ferent distribution than the training examples: The
assumption of Independent Identically Distribution (I.I.D)
is central to almost all machine learning algorithms. Thus,
DL models cannot quickly adapt to data distribution
changes with very few examples.

• Solving problems like humans: It is very difficult for
DL algorithms to solve problems by using a deliberate
sequence of steps.

There are several methods that can alleviate the problems
of DL in the marine environment. For the first and second
problems, in addition to calling for a high quality open dataset
or fine-tune networks pre-trained on ImageNet [105], transfer
learning and GAN have already been applied to reuse high-
level feature during training and to generate high-quality
samples, respectively. However, this process is still quite
challenging, because bias will inevitably be introduced due to
the domain mismatch between different types of data. In recent
years, as a self-supervised learning algorithm, contrastive
learning has gained increasing attention. This algorithm can
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learn the general features of a dataset without labels by
learning representations such that similar samples remain close
to each other. It would be interesting to pretrain the maritime
navigation module under the contrastive learning framework,
which can support various downstream tasks.

Furthermore, based on DRL, the control law can be learned
directly to compensate for uncertainties and disturbances
[138]. The reward functions of DRL have a very large impact
on the learned desired behavior. However, the reward function
is usually hand-crafted, and a single reward function cannot
adapt to complex systems in a dynamic environment. Existing
studies designed extrinsic rewards considering the following
path [19], [170], obstacle avoidance [115], [170], velocity
[19], [115], environmental disturbances [19], distance [115],
etc. A better solution for the agent is to learn some intrinsic
reward functions by itself. For example, the agent can perform
imitation learning by incorporating domain knowledge into RL
with reward shaping,or observing its behavior with inverse RL.

X. CONCLUSION

Full autonomy can be anticipated in the following decades
for maritime scenarios. However, common interfaces, which
heavily rely on advances in the underpinning technology, have
not yet been agreed upon. This paper aims to bridge the
research gap between DL applications and ASVs by providing
a systematic review of the literature on the overlap between
these two fields. The importance of this work is emphasized by
comparing existing ASV-related surveys. Then, state-of-the-art
DL models are presented, as well as their implementation on
NGC systems and maritime cooperative operations classified
by scenarios. In consideration of the above-related studies, we
discuss current challenges and possible future research topics
in the direction of intelligent maritime autonomous operations.
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with experiments, for a model ship in a marine control laboratory,”
Automatica, vol. 41, no. 2, pp. 289–298, 2005.

[132] Y. Zhang, G. E. Hearn, and P. Sen, “A multivariable neural controller
for automatic ship berthing,” IEEE Control Systems Magazine, vol. 17,
no. 4, pp. 31–45, 1997.

[133] B. Qiu, G. Wang, Y. Fan, D. Mu, and X. Sun, “Adaptive sliding mode
trajectory tracking control for unmanned surface vehicle with modeling
uncertainties and input saturation,” Applied Sciences, vol. 9, no. 6, p.
1240, 2019.

[134] Z. Shen, Y. Bi, Y. Wang, and C. Guo, “Mlp neural network-based
recursive sliding mode dynamic surface control for trajectory tracking
of fully actuated surface vessel subject to unknown dynamics and input
saturation,” Neurocomputing, vol. 377, pp. 103–112, 2020.

[135] C. Zhang, C. Wang, J. Wang, and C. Li, “Neuro-adaptive trajectory
tracking control of underactuated autonomous surface vehicles with
high-gain observer,” Applied Ocean Research, vol. 97, p. 102051, 2020.

[136] S.-L. Dai, S. He, M. Wang, and C. Yuan, “Adaptive neural control of
underactuated surface vessels with prescribed performance guarantees,”
IEEE Transactions on Neural Networks and Learning Systems, vol. 30,
no. 12, pp. 3686–3698, 2018.

[137] L.-J. Zhang, H.-M. Jia, and X. Qi, “Nnffc-adaptive output feedback
trajectory tracking control for a surface ship at high speed,” Ocean
Engineering, vol. 38, no. 13, pp. 1430–1438, 2011.

[138] Q. Zhang, W. Pan, and V. Reppa, “Model-reference reinforcement
learning for collision-free tracking control of autonomous surface
vehicles,” IEEE Transactions on Intelligent Transportation Systems,
2021.

[139] Z. Zhao, W. He, and S. S. Ge, “Adaptive neural network control of a
fully actuated marine surface vessel with multiple output constraints,”
IEEE Transactions on Control Systems Technology, vol. 22, no. 4, pp.
1536–1543, 2013.

[140] C.-Z. Pan, X.-Z. Lai, S. X. Yang, and M. Wu, “A biologically inspired
approach to tracking control of underactuated surface vessels subject to
unknown dynamics,” Expert Systems with Applications, vol. 42, no. 4,
pp. 2153–2161, 2015.

[141] S. He, S.-L. Dai, and F. Luo, “Asymptotic trajectory tracking control
with guaranteed transient behavior for msv with uncertain dynamics
and external disturbances,” IEEE Transactions on Industrial Electron-
ics, vol. 66, no. 5, pp. 3712–3720, 2018.

[142] G. Zhang, M. Yao, J. Xu, and W. Zhang, “Robust neural event-triggered
control for dynamic positioning ships with actuator faults,” Ocean
Engineering, vol. 207, p. 107292, 2020.

[143] G. Zhang, S. Chu, X. Jin, and W. Zhang, “Composite neural learning
fault-tolerant control for underactuated vehicles with event-triggered
input,” IEEE Transactions on Cybernetics, pp. 01–12, 2020.

[144] M. Li, T. Li, X. Gao, Q. Shan, C. P. Chen, and Y. Xiao, “Adaptive
nn event-triggered control for path following of underactuated vessels
with finite-time convergence,” Neurocomputing, vol. 379, pp. 203–213,
2020.

[145] M. Chen, S. S. Ge, B. V. E. How, and Y. S. Choo, “Robust adaptive
position mooring control for marine vessels,” IEEE Transactions on
Control Systems Technology, vol. 21, no. 2, pp. 395–409, 2012.

[146] J. Du, Y. Yang, D. Wang, and C. Guo, “A robust adaptive neural
networks controller for maritime dynamic positioning system,” Neu-
rocomputing, vol. 110, pp. 128–136, 2013.

[147] J. Du, X. Hu, H. Liu, and C. P. Chen, “Adaptive robust output feedback
control for a marine dynamic positioning system based on a high-
gain observer,” IEEE Transactions on Neural Networks and Learning
Systems, vol. 26, no. 11, pp. 2775–2786, 2015.

[148] L. Liu, D. Wang, Z. Peng, C. P. Chen, and T. Li, “Bounded neu-
ral network control for target tracking of underactuated autonomous
surface vehicles in the presence of uncertain target dynamics,” IEEE
Transactions on Neural Networks and Learning Systems, vol. 30, no. 4,
pp. 1241–1249, 2018.

[149] M. Chen, S. S. Ge, and Y. S. Choo, “Neural network tracking
control of ocean surface vessels with input saturation,” in 2009 IEEE
International Conference on Automation and Logistics, August 2009,
pp. 85–89.

[150] C.-H. Chen, “Intelligent transportation control system design using
wavelet neural network and pid-type learning algorithms,” Expert
Systems with Applications, vol. 38, no. 6, pp. 6926–6939, 2011.

[151] C.-Z. Pan, X.-Z. Lai, S. X. Yang, and M. Wu, “An efficient neural
network approach to tracking control of an autonomous surface vehicle
with unknown dynamics,” Expert Systems with Applications, vol. 40,
no. 5, pp. 1629–1635, 2013.

[152] S.-L. Dai, M. Wang, C. Wang, and L. Li, “Learning from adaptive
neural network output feedback control of uncertain ocean surface
ship dynamics,” International Journal of Adaptive Control and Signal
Processing, vol. 28, no. 3-5, pp. 341–365, 2014.

[153] N. Wang and M. J. Er, “Self-constructing adaptive robust fuzzy neural
tracking control of surface vehicles with uncertainties and unknown
disturbances,” IEEE Transactions on Control Systems Technology,
vol. 23, no. 3, pp. 991–1002, 2014.

[154] K. Shojaei, “Neural adaptive robust control of underactuated marine
surface vehicles with input saturation,” Applied Ocean Research,
vol. 53, pp. 267–278, 2015.

[155] W. He, Z. Yin, and C. Sun, “Adaptive neural network control of a
marine vessel with constraints using the asymmetric barrier lyapunov
function,” IEEE Transactions on Cybernetics, vol. 47, no. 7, pp. 1641–
1651, 2016.

[156] B. S. Park, J.-W. Kwon, and H. Kim, “Neural network-based output
feedback control for reference tracking of underactuated surface ves-
sels,” Automatica, vol. 77, pp. 353–359, 2017.

[157] G. Zhu, J. Du, and Y. Kao, “Robust adaptive neural trajectory tracking
control of surface vessels under input and output constraints,” Journal
of the Franklin Institute, vol. 257, no. 13, pp. 8591–8610, 2020.

[158] R. Rout, R. Cui, and Z. Han, “Modified line-of-sight guidance law
with adaptive neural network control of underactuated marine vehicles
with state and input constraints,” IEEE transactions on control systems
technology, vol. 28, no. 5, pp. 1902–1914, 2020.

[159] Z. Zheng, L. Ruan, M. Zhu, and X. Guo, “Reinforcement learning
control for underactuated surface vessel with output error constraints
and uncertainties,” Neurocomputing, vol. 399, pp. 479–490, 2020.

[160] C. Zhang, C. Wang, Y. Wei, and J. Wang, “Robust trajectory tracking
control for underactuated autonomous surface vessels with uncertainty
dynamics and unavailable velocities,” Ocean Engineering, vol. 218, p.
108099, 2020.

[161] G. Zhu, Y. Ma, Z. Li, R. Malekian, and M. Sotelo, “Adaptive neural
output feedback control for msvs with predefined performance,” IEEE
Transactions on Vehicular Technology, vol. 70, no. 4, pp. 2994–3006,
2021.

[162] Y. Yan, X. Zhao, S. Yu, and C. Wang, “Barrier function-based adaptive
neural network sliding mode control of autonomous surface vehicles,”
Ocean Engineering, vol. 238, p. 109684, 2021.

[163] B. Zhou, B. Huang, Y. Su, Y. Zheng, and S. Zheng, “Fixed-time neural
network trajectory tracking control for underactuated surface vessels,”
Ocean Engineering, vol. 236, p. 109416, 2021.

[164] Z. Peng, C. Meng, L. Liu, D. Wang, and T. Li, “Pwm-driven model
predictive speed control for an unmanned surface vehicle with unknown
propeller dynamics based on parameter identification and neural pre-
diction,” Neurocomputing, vol. 432, pp. 1–9, 2021.



23

[165] M. A. Unar and D. J. Murray-Smith, “Automatic steering of ships using
neural networks,” International Journal of Adaptive Control and Signal
Processing, vol. 13, no. 4, pp. 203–218, 1999.

[166] G. Zhang and X. Zhang, “Concise robust adaptive path-following
control of underactuated ships using dsc and mlp,” IEEE Journal of
Oceanic Engineering, vol. 39, no. 4, pp. 685–694, 2013.

[167] Z. Zheng and L. Sun, “Path following control for marine surface vessel
with uncertainties and input saturation,” Neurocomputing, vol. 177, pp.
158–167, 2016.

[168] C. Liu, C. P. Chen, Z. Zou, and T. Li, “Adaptive nn-dsc control
design for path following of underactuated surface vessels with input
saturation,” Neurocomputing, vol. 267, pp. 466–474, 2017.

[169] G. Zhang, Y. Deng, and W. Zhang, “Robust neural path-following
control for underactuated ships with the dvs obstacles avoidance
guidance,” Ocean Engineering, vol. 143, pp. 198–208, 2017.

[170] E. Meyer, H. Robinson, A. Rasheed, and O. San, “Taming an au-
tonomous surface vehicle for path following and collision avoidance
using deep reinforcement learning,” IEEE Access, vol. 8, pp. 41 466–
41 481, 2020.

[171] C. Liu, D. Wang, Y. Zhang, and X. Meng, “Model predictive control
for path following and roll stabilization of marine vessels based on
neurodynamic optimization,” Ocean Engineering, vol. 217, p. 107524,
2020.

[172] R. Rout, R. Cui, and W. Yan, “Sideslip-compensated guidance-based
adaptive neural control of marine surface vessels,” IEEE Transactions
on Cybernetics, 2020.

[173] W. Zhou, J. Fu, H. Yan, X. Du, Y. Wang, and H. Zhou, “Event-
triggered approximate optimal path-following control for unmanned
surface vehicles with state constraints,” IEEE Transactions on Neural
Networks and Learning Systems, 2021.

[174] M.-C. Fang, Y.-Z. Zhuo, and Z.-Y. Lee, “The application of the self-
tuning neural network pid controller on the ship roll reduction in
random waves,” Ocean Engineering, vol. 37, no. 7, pp. 529–538, 2010.

[175] M.-C. Fang, Y.-H. Lin, and B.-J. Wang, “Applying the pd controller on
the roll reduction and track keeping for the ship advancing in waves,”
Ocean Engineering, vol. 54, pp. 13–25, 2012.

[176] Y. Wang, S. Chai, F. Khan, and H. D. Nguyen, “Unscented kalman
filter trained neural networks based rudder roll stabilization system for
ship in waves,” Applied Ocean Research, vol. 68, pp. 26–38, 2017.

[177] J. Woo, J. Park, C. Yu, and N. Kim, “Dynamic model identification
of unmanned surface vehicles using deep learning network,” Applied
Ocean Research, vol. 78, pp. 123–133, 2018.

[178] Y. A. Ahmed and K. Hasegawa, “Automatic ship berthing using
artificial neural network trained by consistent teaching data using
nonlinear programming method,” Engineering Applications of Artificial
Intelligence, vol. 26, no. 10, pp. 2287–2304, 2013.

[179] N.-K. Im and V.-S. Nguyen, “Artificial neural network controller for au-
tomatic ship berthing using head-up coordinate system,” International
Journal of Naval Architecture and Ocean Engineering, vol. 10, no. 3,
pp. 235–249, 2018.

[180] Z. Qiang, Z. Guibing, H. Xin, and Y. Renming, “Adaptive neural
network auto-berthing control of marine ships,” Ocean Engineering,
vol. 177, pp. 40–48, 2019.

[181] Z. Peng, D. Wang, T. Li, and Z. Wu, “Leaderless and leader-follower
cooperative control of multiple marine surface vehicles with unknown
dynamics,” Nonlinear Dynamics, vol. 74, no. 1-2, pp. 95–106, 2013.

[182] Z. Peng, D. Wang, and X. Hu, “Robust adaptive formation control of
underactuated autonomous surface vehicles with uncertain dynamics,”
IET Control Theory & Applications, vol. 5, no. 12, pp. 1378–1387,
2011.

[183] Z. Peng, D. Wang, Z. Chen, X. Hu, and W. Lan, “Adaptive dynamic
surface control for formations of autonomous surface vehicles with un-
certain dynamics,” IEEE Transactions on Control Systems Technology,
vol. 21, no. 2, pp. 513–520, 2012.

[184] K. Shojaei, “Leader–follower formation control of underactuated au-
tonomous marine surface vehicles with limited torque,” Ocean Engi-
neering, vol. 105, pp. 196–205, 2015.

[185] Y. Lu, G. Zhang, Z. Sun, and W. Zhang, “Robust adaptive formation
control of underactuated autonomous surface vessels based on mlp and
dob,” Nonlinear Dynamics, vol. 94, no. 1, pp. 503–519, 2018.

[186] S.-L. Dai, S. He, H. Lin, and C. Wang, “Platoon formation control
with prescribed performance guarantees for usvs,” IEEE Transactions
on Industrial Electronics, vol. 65, no. 5, pp. 4237–4246, 2018.

[187] S. He, M. Wang, S.-L. Dai, and F. Luo, “Leader–follower formation
control of usvs with prescribed performance and collision avoidance,”
IEEE Transactions on Industrial Informatics, vol. 15, no. 1, pp. 572–
581, 2018.

[188] C. Dong, Q. Ye, and S.-L. Dai, “Neural-network-based adaptive output-
feedback formation tracking control of usvs under collision avoidance
and connectivity maintenance constraints,” Neurocomputing, vol. 401,
pp. 101–112, 2020.

[189] M. Fu and L. Wang, “Adaptive finite-time event-triggered control
of marine surface vehicles with prescribed performance and output
constraints,” Ocean Engineering, vol. 238, p. 109712, 2021.

[190] C. Huang, X. Zhang, and G. Zhang, “Adaptive neural finite-time
formation control for multiple underactuated vessels with actuator
faults,” Ocean Engineering, vol. 222, p. 108556, 2021.

[191] H. Wang, D. Wang, and Z. Peng, “Adaptive dynamic surface control
for cooperative path following of marine surface vehicles with input
saturation,” Nonlinear Dynamics, vol. 77, no. 1-2, pp. 107–117, 2014.

[192] ——, “Neural network based adaptive dynamic surface control for
cooperative path following of marine surface vehicles via state and
output feedback,” Neurocomputing, vol. 133, pp. 170–178, 2014.

[193] N. Gu, D. Wang, Z. Peng, and L. Liu, “Adaptive bounded neural
network control for coordinated path-following of networked underac-
tuated autonomous surface vehicles under time-varying state-dependent
cyber-attack,” ISA transactions, vol. 104, pp. 212–221, 2020.

[194] L. Liu, D. Wang, Z. Peng, and Q.-L. Han, “Distributed path following
of multiple under-actuated autonomous surface vehicles based on
data-driven neural predictors via integral concurrent learning,” IEEE
Transactions on Neural Networks and Learning Systems, 2021.

[195] Y. Zhao, Y. Ma, and S. Hu, “Usv formation and path-following
control via deep reinforcement learning with random braking,” IEEE
Transactions on Neural Networks and Learning Systems, 2021.

[196] Y. Lu, G. Zhang, Z. Sun, and W. Zhang, “Adaptive cooperative for-
mation control of autonomous surface vessels with uncertain dynamics
and external disturbances,” Ocean Engineering, vol. 167, pp. 36–44,
2018.

[197] H. Liu, G. Chen, and X. Tian, “Cooperative formation control for
multiple surface vessels based on barrier lyapunov function and self-
structuring neural networks,” Ocean Engineering, vol. 216, p. 108163,
2020.

[198] X. Liang, X. Qu, Y. Hou, Y. Li, and R. Zhang, “Distributed coordinated
tracking control of multiple unmanned surface vehicles under complex
marine environments,” Ocean Engineering, vol. 205, p. 107328, 2020.

[199] S. He, C. Dong, and S.-L. Dai, “Adaptive neural formation control for
underactuated unmanned surface vehicles with collision and connec-
tivity constraints,” Ocean Engineering, vol. 226, p. 108834, 2021.

[200] Y. Zhang, D. Wang, Y. Yin, and Z. Peng, “Event-triggered distributed
coordinated control of networked autonomous surface vehicles subject
to fully unknown kinetics via concurrent-learning-based neural predic-
tor,” Ocean Engineering, vol. 234, p. 108966, 2021.

[201] G. Zhu, Y. Ma, Z. Li, R. Malekian, and M. Sotelo, “Event-triggered
adaptive neural fault-tolerant control of underactuated msvs with input
saturation,” IEEE Transactions on Intelligent Transportation Systems,
2021.

[202] B. Huang, S. Song, C. Zhu, J. Li, and B. Zhou, “Finite-time distributed
formation control for multiple unmanned surface vehicles with input
saturation,” Ocean Engineering, vol. 233, p. 109158, 2021.

[203] Z. Peng, J. Wang, and D. Wang, “Containment maneuvering of marine
surface vehicles with multiple parameterized paths via spatial-temporal
decoupling,” IEEE/ASME Transactions on Mechatronics, vol. 22, no. 2,
pp. 1026–1036, 2016.

[204] L. Liu, D. Wang, Z. Peng, and T. Li, “Modular adaptive control
for los-based cooperative path maneuvering of multiple underactuated
autonomous surface vehicles,” IEEE Transactions on Systems, Man,
and Cybernetics: Systems, vol. 47, no. 7, pp. 1613–1624, 2017.

[205] Z. Peng, J. Wang, and D. Wang, “Distributed maneuvering of au-
tonomous surface vehicles based on neurodynamic optimization and
fuzzy approximation,” IEEE Transactions on Control Systems Technol-
ogy, vol. 26, no. 3, pp. 1083–1090, 2017.

[206] Y. Zhang, D. Wang, Z. Peng, T. Li, and L. Liu, “Event-triggered
iss-modular neural network control for containment maneuvering of
nonlinear strict-feedback multi-agent systems,” Neurocomputing, vol.
377, pp. 314–324, 2020.

[207] N. Gu, D. Wang, Z. Peng, and J. Wang, “Safety-critical containment
maneuvering of underactuated autonomous surface vehicles based
on neurodynamic optimization with control barrier functions,” IEEE
Transactions on Neural Networks and Learning Systems, 2021.

[208] X. Zhou, Z. Liu, F. Wang, Y. Xie, and X. Zhang, “Using deep learning
to forecast maritime vessel flows,” Sensors, vol. 20, no. 6, p. 1761,
2020.

[209] T. Yang, J. Li, H. Feng, N. Cheng, and W. Guan, “A novel transmission
scheduling based on deep reinforcement learning in software-defined



24

maritime communication networks,” IEEE Transactions on Cognitive
Communications and Networking, vol. 5, no. 4, pp. 1155–1166, 2019.

[210] Z. Yuan, J. Liu, Q. Zhang, Y. Liu, Y. Yuan, and Z. Li, “Prediction and
optimisation of fuel consumption for inland ships considering real-
time status and environmental factors,” Ocean Engineering, vol. 221,
p. 108530, 2021.

[211] L. Zhang, L. Zhang, and B. Du, “Deep learning for remote sensing
data: A technical tutorial on the state of the art,” IEEE Geoscience and
Remote Sensing Magazine, vol. 4, no. 2, pp. 22–40, 2016.

[212] F. Zhuang, Z. Qi, K. Duan, D. Xi, Y. Zhu, H. Zhu, H. Xiong, and
Q. He, “A comprehensive survey on transfer learning,” Proceedings of
the IEEE, vol. 109, no. 1, pp. 43–76, 2020.

[213] M. Everett, Y. F. Chen, and J. P. How, “Motion planning among
dynamic, decision-making agents with deep reinforcement learning,”
in 2018 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). IEEE, 2018, pp. 3052–3059.

[214] A. Koesdwiady, R. Soua, and F. Karray, “Improving traffic flow
prediction with weather information in connected cars: A deep learning
approach,” IEEE Transactions on Vehicular Technology, vol. 65, no. 12,
pp. 9508–9517, 2016.

[215] S. Aslam, M. P. Michaelides, and H. Herodotou, “Internet of ships: A
survey on architectures, emerging applications, and challenges,” IEEE
Internet of Things Journal, 2020.

[216] Y. Yang, M. Zhong, H. Yao, F. Yu, X. Fu, and O. Postolache,
“Internet of things for smart ports: Technologies and challenges,” IEEE
Instrumentation & Measurement Magazine, vol. 21, no. 1, pp. 34–43,
2018.

[217] W. Wang, T. Shan, P. Leoni, D. Fernández-Gutiérrez, D. Meyers,
C. Ratti, and D. Rus, “Roboat ii: A novel autonomous surface vessel for
urban environments,” in 2020 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). IEEE, 2020, pp. 1740–1747.
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